Spaces:
Sleeping
Sleeping
File size: 13,221 Bytes
5b50796 26bca4f 5b50796 88945ca 5b50796 aaf362d 1978fc5 88945ca 5b50796 aaf362d 88945ca 60ae9bc 88945ca 5b50796 60ae9bc 5b50796 60ae9bc 5b50796 ff6946f a403423 60ae9bc a403423 60ae9bc a403423 60ae9bc a6dbe30 60ae9bc e6344ec 60ae9bc a403423 e6344ec a403423 60ae9bc a403423 60ae9bc a403423 60ae9bc a6dbe30 60ae9bc e6344ec 4b172ec a403423 e6344ec 60ae9bc 6148fb4 e6344ec 53f69b8 60ae9bc e6344ec 53f69b8 60ae9bc 4b172ec a403423 60ae9bc 53f69b8 60ae9bc aaf362d 60ae9bc 26bca4f aaf362d efc1ae9 0f6ffbd aaf362d 60ae9bc efc1ae9 60ae9bc 0f6ffbd 60ae9bc 0f6ffbd b7412b9 60ae9bc b7412b9 60ae9bc 26bca4f 0f6ffbd b7412b9 0f6ffbd b7412b9 0f6ffbd 60ae9bc b7412b9 60ae9bc b7412b9 60ae9bc b7412b9 60ae9bc b7412b9 60ae9bc b7412b9 60ae9bc 0f6ffbd 60ae9bc b7412b9 60ae9bc b7412b9 aaf362d 60ae9bc 26bca4f 60ae9bc 26bca4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from deap import base, creator, tools, algorithms
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, AutoModelForSequenceClassification
import gc
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
# Initialize Example Emotions Dataset
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])
# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories
# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
# Lazy loading for the fine-tuned language model
_finetuned_lm_tokenizer = None
_finetuned_lm_model = None
def get_finetuned_lm_model():
global _finetuned_lm_tokenizer, _finetuned_lm_model
if _finetuned_lm_tokenizer is None or _finetuned_lm_model is None:
finetuned_lm_model_name = "microsoft/DialoGPT-large" # Replace with your fine-tuned language model name
_finetuned_lm_tokenizer = AutoTokenizer.from_pretrained(finetuned_lm_model_name)
_finetuned_lm_model = AutoModelForCausalLM.from_pretrained(finetuned_lm_model_name, device_map="auto", low_cpu_mem_usage=True)
return _finetuned_lm_tokenizer, _finetuned_lm_model
# Enhanced Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'motivation': {'percentage': 'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}
}
total_percentage = 200
emotion_history_file = 'emotion_history.json'
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data()
def update_emotion(emotion, percentage, intensity):
"""
Updates the emotional state based on the provided emotion, percentage, and intensity.
Args:
emotion (str): Name of the emotion to update.
percentage (float): Percentage change to apply to the emotion.
intensity (float): Intensity value to update for the emotion.
"""
emotions['ideal_state']['percentage'] -= percentage
emotions[emotion]['percentage'] += percentage
emotions[emotion]['intensity'] = intensity
total_current = sum(e['percentage'] for e in emotions.values())
adjustment = total_percentage - total_current
emotions['ideal_state']['percentage'] += adjustment
def normalize_context(context):
"""
Normalizes the context text by converting it to lowercase and removing whitespace.
Args:
context (str): The context text to normalize.
Returns:
str: The normalized context text.
"""
return context.lower().strip()
# Improved Genetic Algorithm for Emotion Evolution with clear function definition
def evolve_emotions():
"""
Evolves the emotional states using a genetic algorithm to find an optimal balance.
This function utilizes the DEAP library to implement a genetic algorithm. It aims to
find a combination of emotional states that minimizes the following criteria:
1. Difference between the ideal state (100%) and its actual percentage.
2. Sum of all non-ideal emotional percentages.
3. Range of emotional intensities.
The weights for these criteria can be adjusted in the `creator.create("FitnessMulti", ...)` line.
"""
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2)) # Weights for evaluation criteria
creator.create("Individual", list, fitness=creator.FitnessMulti)
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 20)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * (len(emotions) - 1) + # Individual emotions
(toolbox.attr_intensity,) * len(emotions) + # Intensities
(lambda: 100,), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", evaluate)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100,
stats=None, halloffame=None, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
emotion_values = best_individual[:len(emotions) - 1]
intensities = best_individual[-21:-1]
ideal_state = best_individual[-1]
for i, emotion in enumerate(emotions):
emotions[emotion]['percentage'] = emotion_values[i]
emotions[emotion]['intensity'] = intensities[i]
emotions['ideal_state']['percentage'] = ideal_state
def predict_emotion(context):
"""
Predicts the emotion from the provided context using a pre-trained BERT model.
Args:
context (str): The context text for emotion prediction.
Returns:
str: The predicted emotion.
"""
emotion_prediction_pipeline = pipeline('text-classification', model=emotion_prediction_model, tokenizer=emotion_prediction_tokenizer, top_k=None)
predictions = emotion_prediction_pipeline(context)
emotion_scores = {prediction['label']: prediction['score'] for prediction in predictions[0]}
emotion_pred = max(emotion_scores, key=emotion_scores.get)
return emotion_pred
def generate_text(prompt, emotion=None, max_length=100):
"""
Generates text using a fine-tuned language model, optionally incorporating the specified emotion.
Args:
prompt (str): The starting prompt for text generation.
emotion (str, optional): The emotion to consider during generation. Defaults to None.
max_length (int, optional): The maximum length of the generated text. Defaults to 100.
Returns:
str: The generated text.
"""
finetuned_lm_tokenizer, finetuned_lm_model = get_finetuned_lm_model()
input_ids = finetuned_lm_tokenizer.encode(prompt, return_tensors='pt')
attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
if torch.cuda.is_available():
input_ids = input_ids.cuda()
attention_mask = attention_mask.cuda()
finetuned_lm_model = finetuned_lm_model.cuda()
if emotion:
emotion_token = emotion_prediction_tokenizer.encode(emotion, add_special_tokens=False)
input_ids = torch.cat((input_ids, torch.tensor(emotion_token).unsqueeze(0)), dim=1)
outputs = finetuned_lm_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_length=max_length,
pad_token_id=finetuned_lm_tokenizer.eos_token_id,
num_return_sequences=1,
temperature=0.7,
top_p=0.9,
do_sample=True
)
return finetuned_lm_tokenizer.decode(outputs[0], skip_special_tokens=True)
def optimize_ai_model(emotion_history):
"""
Trains a Random Forest classifier to predict emotions based on historical data.
This function is optional and can be used to improve the accuracy of emotion prediction
over time by learning from past interactions.
Args:
emotion_history (list): A list of dictionaries containing context and emotion information.
Returns:
tuple: A tuple containing the trained classifier and its accuracy score (or None if insufficient data).
"""
if len(emotion_history) < 2:
return None, None
contexts = [entry['context'] for entry in emotion_history]
emotions = [entry['emotion'] for entry in emotion_history]
encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
X = encoder.fit_transform(np.array(contexts).reshape(-1, 1))
y = np.array(pd.Categorical(emotions).
codes)
clf = RandomForestClassifier(n_estimators=100)
clf.fit(X, y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
accuracy = clf.score(X_test, y_test)
return clf, accuracy
def get_dominant_emotion():
"""
Returns the emotion with the highest percentage.
Returns:
str: The emotion with the highest percentage.
"""
dominant_emotion = max(emotions, key=lambda e: emotions[e]['percentage'])
return dominant_emotion
def respond_to_user(context):
"""
Responds to the user based on the provided context.
This function predicts the user's emotion from the context, generates a response that
considers the user's emotional state, and updates the internal emotional states.
Args:
context (str): The user's input context.
Returns:
str: The AI's response to the user.
"""
predicted_emotion = predict_emotion(context)
dominant_emotion = get_dominant_emotion()
response = f"You seem to be feeling {predicted_emotion}. "
if predicted_emotion == dominant_emotion:
response += f"I understand that you're feeling strongly about {predicted_emotion} right now. "
else:
response += f"Is there anything I can do to help you with {predicted_emotion}? "
if dominant_emotion != 'ideal_state':
adjustment_percentage = min(emotions[dominant_emotion]['percentage'] / 2, 10)
update_emotion(dominant_emotion, -adjustment_percentage, 0)
emotion_history.append({'context': context, 'emotion': predicted_emotion})
save_historical_data(emotion_history)
# Train the emotion prediction classifier if enough data is available
trained_clf, accuracy = optimize_ai_model(emotion_history)
if trained_clf:
print(f"Emotion prediction model accuracy: {accuracy:.2f}")
generated_text = generate_text(prompt=response, emotion=dominant_emotion)
return generated_text
interface = gr.Interface(respond_to_user, inputs="textbox", outputs="textbox", title="AI Assistant with Evolving Emotions", description="Talk to an AI that adapts to your emotions.")
interface.launch()
# Clean up memory usage
del finetuned_lm_tokenizer
del finetuned_lm_model
gc.collect()
|