File size: 13,221 Bytes
5b50796
 
 
 
 
 
 
 
 
 
26bca4f
 
5b50796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88945ca
 
 
 
5b50796
 
 
 
aaf362d
1978fc5
88945ca
5b50796
aaf362d
88945ca
 
60ae9bc
 
88945ca
 
 
 
 
 
 
5b50796
60ae9bc
5b50796
 
 
 
 
 
 
 
 
 
 
60ae9bc
5b50796
 
 
 
 
 
 
 
 
 
 
 
ff6946f
a403423
60ae9bc
a403423
 
 
 
 
 
60ae9bc
a403423
 
 
 
60ae9bc
a6dbe30
 
60ae9bc
e6344ec
60ae9bc
 
 
 
 
 
 
 
 
a403423
 
e6344ec
a403423
 
 
 
 
60ae9bc
a403423
60ae9bc
 
 
 
 
 
 
 
 
 
a403423
 
60ae9bc
 
a6dbe30
60ae9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
e6344ec
4b172ec
a403423
e6344ec
 
 
60ae9bc
 
6148fb4
e6344ec
53f69b8
60ae9bc
e6344ec
53f69b8
 
 
60ae9bc
 
4b172ec
a403423
60ae9bc
53f69b8
 
 
 
 
 
 
 
 
60ae9bc
aaf362d
60ae9bc
 
 
 
 
 
 
 
 
 
26bca4f
aaf362d
efc1ae9
0f6ffbd
aaf362d
 
60ae9bc
efc1ae9
60ae9bc
 
 
 
 
 
 
 
 
 
 
 
0f6ffbd
 
 
60ae9bc
0f6ffbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7412b9
60ae9bc
b7412b9
60ae9bc
 
 
 
 
 
 
 
 
 
 
 
 
26bca4f
0f6ffbd
b7412b9
0f6ffbd
 
b7412b9
0f6ffbd
 
60ae9bc
 
 
 
b7412b9
60ae9bc
 
b7412b9
60ae9bc
b7412b9
 
60ae9bc
 
 
b7412b9
60ae9bc
 
 
b7412b9
60ae9bc
 
0f6ffbd
 
60ae9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7412b9
60ae9bc
 
b7412b9
aaf362d
60ae9bc
 
26bca4f
60ae9bc
 
 
26bca4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from deap import base, creator, tools, algorithms
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, AutoModelForSequenceClassification
import gc

warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')

# Initialize Example Emotions Dataset
data = {
    'context': [
        'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
        'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
        'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
        'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
        'I am pessimistic', 'I feel bored', 'I am envious'
    ],
    'emotion': [
        'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
        'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
        'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
    ]
}
df = pd.DataFrame(data)

# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])

# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories

# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")

# Lazy loading for the fine-tuned language model
_finetuned_lm_tokenizer = None
_finetuned_lm_model = None


def get_finetuned_lm_model():
    global _finetuned_lm_tokenizer, _finetuned_lm_model
    if _finetuned_lm_tokenizer is None or _finetuned_lm_model is None:
        finetuned_lm_model_name = "microsoft/DialoGPT-large"  # Replace with your fine-tuned language model name
        _finetuned_lm_tokenizer = AutoTokenizer.from_pretrained(finetuned_lm_model_name)
        _finetuned_lm_model = AutoModelForCausalLM.from_pretrained(finetuned_lm_model_name, device_map="auto", low_cpu_mem_usage=True)
    return _finetuned_lm_tokenizer, _finetuned_lm_model


# Enhanced Emotional States
emotions = {
    'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
    'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
    'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
    'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'motivation': {'percentage':    'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
    'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
    'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
    'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
    'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
    'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
    'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
    'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
    'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
    'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}
}
total_percentage = 200
emotion_history_file = 'emotion_history.json'


def load_historical_data(file_path=emotion_history_file):
    if os.path.exists(file_path):
        with open(file_path, 'r') as file:
            return json.load(file)
    return []


def save_historical_data(historical_data, file_path=emotion_history_file):
    with open(file_path, 'w') as file:
        json.dump(historical_data, file)


emotion_history = load_historical_data()


def update_emotion(emotion, percentage, intensity):
    """
    Updates the emotional state based on the provided emotion, percentage, and intensity.

    Args:
        emotion (str): Name of the emotion to update.
        percentage (float): Percentage change to apply to the emotion.
        intensity (float): Intensity value to update for the emotion.
    """

    emotions['ideal_state']['percentage'] -= percentage
    emotions[emotion]['percentage'] += percentage
    emotions[emotion]['intensity'] = intensity

    total_current = sum(e['percentage'] for e in emotions.values())
    adjustment = total_percentage - total_current
    emotions['ideal_state']['percentage'] += adjustment


def normalize_context(context):
    """
    Normalizes the context text by converting it to lowercase and removing whitespace.

    Args:
        context (str): The context text to normalize.

    Returns:
        str: The normalized context text.
    """

    return context.lower().strip()


# Improved Genetic Algorithm for Emotion Evolution with clear function definition
def evolve_emotions():
    """
    Evolves the emotional states using a genetic algorithm to find an optimal balance.

    This function utilizes the DEAP library to implement a genetic algorithm. It aims to
    find a combination of emotional states that minimizes the following criteria:

    1. Difference between the ideal state (100%) and its actual percentage.
    2. Sum of all non-ideal emotional percentages.
    3. Range of emotional intensities.

    The weights for these criteria can be adjusted in the `creator.create("FitnessMulti", ...)` line.
    """

    creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))  # Weights for evaluation criteria
    creator.create("Individual", list, fitness=creator.FitnessMulti)

    toolbox = base.Toolbox()
    toolbox.register("attr_float", random.uniform, 0, 20)
    toolbox.register("attr_intensity", random.uniform, 0, 10)
    toolbox.register("individual", tools.initCycle, creator.Individual,
                     (toolbox.attr_float,) * (len(emotions) - 1) +  # Individual emotions
                     (toolbox.attr_intensity,) * len(emotions) +  # Intensities
                     (lambda: 100,), n=1)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2
    toolbox.register("select", tools.selNSGA2)
    toolbox.register("evaluate", evaluate)

    population = toolbox.population(n=100)
    algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100,
                               stats=None, halloffame=None, verbose=False)

    best_individual = tools.selBest(population, k=1)[0]
    emotion_values = best_individual[:len(emotions) - 1]
    intensities = best_individual[-21:-1]
    ideal_state = best_individual[-1]

    for i, emotion in enumerate(emotions):
        emotions[emotion]['percentage'] = emotion_values[i]
        emotions[emotion]['intensity'] = intensities[i]

    emotions['ideal_state']['percentage'] = ideal_state


def predict_emotion(context):
    """
    Predicts the emotion from the provided context using a pre-trained BERT model.

    Args:
        context (str): The context text for emotion prediction.

    Returns:
        str: The predicted emotion.
    """

    emotion_prediction_pipeline = pipeline('text-classification', model=emotion_prediction_model, tokenizer=emotion_prediction_tokenizer, top_k=None)
    predictions = emotion_prediction_pipeline(context)
    emotion_scores = {prediction['label']: prediction['score'] for prediction in predictions[0]}
    emotion_pred = max(emotion_scores, key=emotion_scores.get)
    return emotion_pred


def generate_text(prompt, emotion=None, max_length=100):
    """
    Generates text using a fine-tuned language model, optionally incorporating the specified emotion.

    Args:
        prompt (str): The starting prompt for text generation.
        emotion (str, optional): The emotion to consider during generation. Defaults to None.
        max_length (int, optional): The maximum length of the generated text. Defaults to 100.

    Returns:
        str: The generated text.
    """

    finetuned_lm_tokenizer, finetuned_lm_model = get_finetuned_lm_model()
    input_ids = finetuned_lm_tokenizer.encode(prompt, return_tensors='pt')
    attention_mask = torch.ones(input_ids.shape, dtype=torch.long)

    if torch.cuda.is_available():
        input_ids = input_ids.cuda()
        attention_mask = attention_mask.cuda()
        finetuned_lm_model = finetuned_lm_model.cuda()

    if emotion:
        emotion_token = emotion_prediction_tokenizer.encode(emotion, add_special_tokens=False)
        input_ids = torch.cat((input_ids, torch.tensor(emotion_token).unsqueeze(0)), dim=1)

    outputs = finetuned_lm_model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        max_length=max_length,
        pad_token_id=finetuned_lm_tokenizer.eos_token_id,
        num_return_sequences=1,
        temperature=0.7,
        top_p=0.9,
        do_sample=True
    )

    return finetuned_lm_tokenizer.decode(outputs[0], skip_special_tokens=True)


def optimize_ai_model(emotion_history):
    """
    Trains a Random Forest classifier to predict emotions based on historical data.

    This function is optional and can be used to improve the accuracy of emotion prediction
    over time by learning from past interactions.

    Args:
        emotion_history (list): A list of dictionaries containing context and emotion information.

    Returns:
        tuple: A tuple containing the trained classifier and its accuracy score (or None if insufficient data).
    """

    if len(emotion_history) < 2:
        return None, None

    contexts = [entry['context'] for entry in emotion_history]
    emotions = [entry['emotion'] for entry in emotion_history]

    encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
    X = encoder.fit_transform(np.array(contexts).reshape(-1, 1))
    y = np.array(pd.Categorical(emotions).
    codes)
    clf = RandomForestClassifier(n_estimators=100)
    clf.fit(X, y)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    accuracy = clf.score(X_test, y_test)

    return clf, accuracy


def get_dominant_emotion():
    """
    Returns the emotion with the highest percentage.

    Returns:
        str: The emotion with the highest percentage.
    """

    dominant_emotion = max(emotions, key=lambda e: emotions[e]['percentage'])
    return dominant_emotion


def respond_to_user(context):
    """
    Responds to the user based on the provided context.

    This function predicts the user's emotion from the context, generates a response that
    considers the user's emotional state, and updates the internal emotional states.

    Args:
        context (str): The user's input context.

    Returns:
        str: The AI's response to the user.
    """

    predicted_emotion = predict_emotion(context)
    dominant_emotion = get_dominant_emotion()

    response = f"You seem to be feeling {predicted_emotion}. "

    if predicted_emotion == dominant_emotion:
        response += f"I understand that you're feeling strongly about {predicted_emotion} right now. "
    else:
        response += f"Is there anything I can do to help you with {predicted_emotion}? "

    if dominant_emotion != 'ideal_state':
        adjustment_percentage = min(emotions[dominant_emotion]['percentage'] / 2, 10)
        update_emotion(dominant_emotion, -adjustment_percentage, 0)

    emotion_history.append({'context': context, 'emotion': predicted_emotion})
    save_historical_data(emotion_history)

    # Train the emotion prediction classifier if enough data is available
    trained_clf, accuracy = optimize_ai_model(emotion_history)
    if trained_clf:
        print(f"Emotion prediction model accuracy: {accuracy:.2f}")

    generated_text = generate_text(prompt=response, emotion=dominant_emotion)
    return generated_text


interface = gr.Interface(respond_to_user, inputs="textbox", outputs="textbox", title="AI Assistant with Evolving Emotions", description="Talk to an AI that adapts to your emotions.")
interface.launch()

# Clean up memory usage
del finetuned_lm_tokenizer
del finetuned_lm_model
gc.collect()