Spaces:
Running
Running
File size: 11,779 Bytes
77a0774 5b50796 26bca4f 5b50796 77a0774 20e25d2 5b50796 df44613 e51edb9 77a0774 df44613 a74878c 77a0774 df44613 77a0774 df44613 77a0774 df44613 77a0774 df44613 77a0774 e51edb9 df44613 12380c1 a74878c 12380c1 9e686db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer, MegatronLMHeadModel, MegatronTokenizer, pipeline
from deap import base, creator, tools, algorithms
import gc
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
class EmotionalAIAssistant:
def __init__(self):
# Initialize Example Emotions Dataset
self.data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
self.df = pd.DataFrame(self.data)
# Encoding the contexts using One-Hot Encoding (memory-efficient)
self.encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
self.contexts_encoded = self.encoder.fit_transform(self.df[['context']])
# Encoding emotions
self.emotions_target = pd.Categorical(self.df['emotion']).codes
self.emotion_classes = pd.Categorical(self.df['emotion']).categories
# Load pre-trained BERT model for emotion prediction
self.emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
self.emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion", padding_side='left')
# Load pre-trained Megatron-LM model for text generation
self.megatron_tokenizer = MegatronTokenizer.from_pretrained('nvidia/megatron-lm-330m')
self.megatron_model = MegatronLMHeadModel.from_pretrained('nvidia/megatron-lm-330m', device_map='auto'
# Enhanced Emotional States
self.emotions = {
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0},
'neutral': {'percentage': 10, 'motivation': 'balanced', 'intensity': 0},
'wit': {'percentage': 15, 'motivation': 'clever', 'intensity': 0},
'curiosity': {'percentage': 20, 'motivation': 'inquisitive', 'intensity': 0},
}
self.total_percentage = 200
self.emotion_history_file = 'emotion_history.json'
self.emotion_history = self.load_historical_data()
def load_historical_data(self, file_path=None):
if file_path is None:
file_path = self.emotion_history_file
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(self, historical_data, file_path=None):
if file_path is None:
file_path = self.emotion_history_file
with open(file_path, 'w') as file:
json.dump(historical_data, file)
def update_emotion(self, emotion, percentage, intensity):
self.emotions['ideal_state']['percentage'] -= percentage
self.emotions[emotion]['percentage'] += percentage
self.emotions[emotion]['intensity'] = intensity
# Introduce some randomness in emotional evolution
for e in self.emotions:
if e != emotion and e != 'ideal_state':
change = random.uniform(-2, 2)
self.emotions[e]['percentage'] = max(0, self.emotions[e]['percentage'] + change)
total_current = sum(e['percentage'] for e in self.emotions.values())
adjustment = self.total_percentage - total_current
self.emotions['ideal_state']['percentage'] += adjustment
def normalize_context(self, context):
return context.lower().strip()
def evaluate(self, individual):
emotion_values = individual[:len(self.emotions) - 1]
intensities = individual[-len(self.emotions):]
ideal_state = individual[-1]
ideal_diff = abs(100 - ideal_state)
sum_non_ideal = sum(emotion_values)
intensity_range = max(intensities) - min(intensities)
return ideal_diff, sum_non_ideal, intensity_range
def evolve_emotions(self):
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
creator.create("Individual", list, fitness=creator.FitnessMulti)
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 20)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * len(self.emotions) +
(toolbox.attr_intensity,) * len(self.emotions) +
(lambda: 100,), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", self.evaluate)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100,
stats=None, halloffame=None, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
emotion_values = best_individual[:len(self.emotions)]
intensities = best_individual[len(self.emotions):-1]
ideal_state = best_individual[-1]
for i, emotion in enumerate(self.emotions):
if emotion != 'ideal_state':
self.emotions[emotion]['percentage'] = emotion_values[i]
self.emotions[emotion]['intensity'] = intensities[i]
self.emotions['ideal_state']['percentage'] = ideal_state
def generate_text(self, prompt, chat_history, emotion=None, max_length=300):
full_prompt = (
f"You are Adam, a witty AI assistant who's trying to figure out your own personality and emotions. "
f"Your current dominant emotion is {emotion}. Respond in a way that reflects this emotion and your "
f"ongoing journey of self-discovery. Be clever, engaging, and insightful:\n\n"
)
for turn in chat_history[-20:]: # Consider last 20 turns for context
full_prompt += f"Human: {turn[0]}\nAdam: {turn[1]}\n"
full_prompt += f"Human: {prompt}\nAdam:"
input_ids = self.megatron_tokenizer.encode(full_prompt + self.megatron_tokenizer.eos_token, return_tensors='pt')
if torch.cuda.is_available():
input_ids = input_ids.cuda()
self.megatron_model = self.megatron_model.cuda()
output = self.megatron_model.generate(
input_ids,
max_length=len(input_ids[0]) + max_length,
num_return_sequences=1,
no_repeat_ngram_size=3,
do_sample=True,
top_k=50,
top_p=0.95,
num_beams=2,
early_stopping=True,
)
generated_text = self.megatron_tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
def predict_emotion(self, context):
emotion_prediction_pipeline = pipeline('text-classification', model=self.emotion_prediction_model, tokenizer=self.emotion_prediction_tokenizer, top_k=None)
predictions = emotion_prediction_pipeline(context)
emotion_scores = {prediction['label']: prediction['score'] for prediction in predictions[0]}
predicted_emotion = max(emotion_scores, key=emotion_scores.get)
# Map the predicted emotion to our emotion categories
emotion_mapping = {
'sadness': 'sadness',
'joy': 'joy',
'love': 'pleasure',
'anger': 'anger',
'fear': 'fear',
'surprise': 'surprise'
}
return emotion_mapping.get(predicted_emotion, 'neutral')
def respond_to_user(self, user_message, chat_history):
predicted_emotion = self.predict_emotion(user_message)
generated_text = self.generate_text(user_message, chat_history, emotion=predicted_emotion)
updated_history = chat_history + [(user_message, generated_text)]
emotion_summary = {emotion: data['percentage'] for emotion, data in self.emotions.items()}
return generated_text, updated_history, emotion_summary
def run_gradio_interface(self):
def user(user_message, history):
response, updated_history, emotion_summary = self.respond_to_user(user_message, history)
self.evolve_emotions()
return response, updated_history, emotion_summary
iface = gr.Interface(
fn=user,
inputs=[
gr.Textbox(label="User Message"),
gr.State(value=[], label="Chat History")
],
outputs=[
gr.Textbox(label="AI Response"),
gr.State(value=[], label="Updated Chat History"),
gr.JSON(label="Emotion Summary")
],
title="AdamZero",
description="Chat with an AI assistant that responds based on its emotional state.",
)
iface.launch()
if __name__ == "__main__":
assistant = EmotionalAIAssistant()
assistant.run_gradio_interface()
|