File size: 9,635 Bytes
15526fe 3db0aec 9814e5f 3db0aec d604335 d9a6878 3db0aec d604335 3db0aec d604335 3db0aec d604335 3db0aec d604335 3db0aec d604335 3db0aec d604335 7030681 d604335 3db0aec d604335 3db0aec d604335 3db0aec d604335 3db0aec d604335 3db0aec d604335 3db0aec d604335 dbd2162 60dab82 3db0aec d604335 3db0aec 7030681 3db0aec d604335 3db0aec 7030681 d604335 3db0aec d604335 3db0aec d9a6878 d604335 d9a6878 d604335 3db0aec 15526fe d604335 3db0aec d604335 dbd2162 d604335 3db0aec d604335 15526fe 9814e5f d604335 3db0aec d604335 d9a6878 d604335 d9a6878 d604335 3db0aec d604335 9814e5f d604335 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import streamlit as st
from transformers import ViTForImageClassification, ViTImageProcessor
from PIL import Image
import torch
import time
import gc
from knowledge_base import KNOWLEDGE_BASE, DAMAGE_TYPES
from rag_utils import RAGSystem
import os
# Constants
MAX_FILE_SIZE = 5 * 1024 * 1024 # 5MB
MAX_IMAGE_SIZE = 1024 # Maximum dimension for images
MODEL_NAME = "google/vit-base-patch16-224"
CACHE_DIR = "/tmp/model_cache" # HF Spaces compatible cache directory
# Ensure cache directory exists
os.makedirs(CACHE_DIR, exist_ok=True)
# Initialize session state for caching
if 'model' not in st.session_state:
st.session_state.model = None
if 'processor' not in st.session_state:
st.session_state.processor = None
if 'rag_system' not in st.session_state:
st.session_state.rag_system = None
def cleanup_memory():
"""Clean up memory and GPU cache"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
@st.cache_resource(show_spinner="Loading AI model...")
def load_model():
"""Load and cache the model and processor with error handling"""
try:
# Initialize processor with cache directory
processor = ViTImageProcessor.from_pretrained(
MODEL_NAME,
cache_dir=CACHE_DIR,
local_files_only=False
)
# Determine device - prefer CPU on Hugging Face Spaces
device = "cpu" # Default to CPU for stability
# Load model with specific configuration
model = ViTForImageClassification.from_pretrained(
MODEL_NAME,
num_labels=len(DAMAGE_TYPES),
ignore_mismatched_sizes=True,
cache_dir=CACHE_DIR,
local_files_only=False
).to(device)
model.eval() # Set to evaluation mode
return model, processor
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.info("Attempting to reload model... Please wait.")
cleanup_memory()
return None, None
def init_rag_system():
"""Initialize RAG system with error handling"""
if st.session_state.rag_system is None:
try:
st.session_state.rag_system = RAGSystem()
st.session_state.rag_system.initialize_knowledge_base(KNOWLEDGE_BASE)
except Exception as e:
st.error(f"Error initializing RAG system: {str(e)}")
st.session_state.rag_system = None
def process_image(image):
"""Process and validate image with enhanced error handling"""
try:
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize if needed
if max(image.size) > MAX_IMAGE_SIZE:
ratio = MAX_IMAGE_SIZE / max(image.size)
new_size = tuple([int(dim * ratio) for dim in image.size])
image = image.resize(new_size, Image.Resampling.LANCZOS)
return image
except Exception as e:
st.error(f"Error processing image: {str(e)}")
return None
def analyze_damage(image, model, processor):
"""Analyze structural damage with enhanced error handling and memory management"""
try:
device = next(model.parameters()).device
with torch.no_grad():
# Process image
inputs = processor(images=image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
# Run inference
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
# Clean up
cleanup_memory()
return probs.cpu()
except RuntimeError as e:
if "out of memory" in str(e):
cleanup_memory()
st.error("Memory error. Processing with reduced image size...")
# Retry with smaller image
image = image.resize((224, 224), Image.Resampling.LANCZOS)
return analyze_damage(image, model, processor)
else:
st.error(f"Error during analysis: {str(e)}")
return None
except Exception as e:
st.error(f"Unexpected error: {str(e)}")
return None
def display_analysis_results(predictions, analysis_time):
"""Display analysis results with enhanced visualization and error handling"""
try:
st.markdown("### π Analysis Results")
st.markdown(f"*Analysis completed in {analysis_time:.2f} seconds*")
detected = False
for idx, prob in enumerate(predictions):
confidence = float(prob) * 100
if confidence > 15: # Threshold for displaying results
detected = True
damage_type = DAMAGE_TYPES[idx]['name']
risk_level = DAMAGE_TYPES[idx]['risk']
# Create expander with color-coded header
with st.expander(
f"π {damage_type.replace('_', ' ').title()} - {confidence:.1f}% ({risk_level})",
expanded=True
):
# Display confidence bar
st.progress(confidence / 100)
# Create tabs for organized information
details_tab, repair_tab, action_tab = st.tabs([
"π Details", "π§ Repair Plan", "β οΈ Actions Needed"
])
with details_tab:
display_damage_details(damage_type, confidence)
with repair_tab:
display_repair_plan(damage_type)
with action_tab:
display_action_items(damage_type)
# Display enhanced analysis if RAG system is available
if st.session_state.rag_system:
display_enhanced_analysis(damage_type, confidence)
if not detected:
st.success("No significant structural damage detected. Regular maintenance recommended.")
except Exception as e:
st.error(f"Error displaying results: {str(e)}")
def main():
"""Main application function with enhanced error handling and UI"""
try:
# Page configuration
st.set_page_config(
page_title="Structural Damage Analyzer Pro",
page_icon="ποΈ",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown(get_custom_css(), unsafe_allow_html=True)
# Header
display_header()
# Initialize systems
if st.session_state.model is None or st.session_state.processor is None:
with st.spinner("Initializing AI model..."):
model, processor = load_model()
if model is None:
st.error("Failed to initialize model. Please refresh the page.")
return
st.session_state.model = model
st.session_state.processor = processor
init_rag_system()
# File upload section
uploaded_file = st.file_uploader(
"Upload structural image for analysis",
type=['jpg', 'jpeg', 'png'],
help="Maximum file size: 5MB"
)
if uploaded_file:
process_uploaded_file(uploaded_file)
# Footer
display_footer()
except Exception as e:
st.error(f"Application error: {str(e)}")
st.info("Please refresh the page and try again.")
cleanup_memory()
def process_uploaded_file(uploaded_file):
"""Process uploaded file with comprehensive error handling"""
try:
# Validate file size
if uploaded_file.size > MAX_FILE_SIZE:
st.error("File too large. Please upload an image smaller than 5MB.")
return
# Process image
image = Image.open(uploaded_file)
processed_image = process_image(image)
if processed_image is None:
return
# Display layout
col1, col2 = st.columns([1, 1])
with col1:
st.image(processed_image, caption="Uploaded Structure", use_column_width=True)
with col2:
with st.spinner("π Analyzing structural damage..."):
start_time = time.time()
predictions = analyze_damage(
processed_image,
st.session_state.model,
st.session_state.processor
)
if predictions is not None:
analysis_time = time.time() - start_time
display_analysis_results(predictions, analysis_time)
except Exception as e:
st.error(f"Error processing upload: {str(e)}")
cleanup_memory()
def get_custom_css():
"""Return custom CSS for enhanced UI"""
return """
<style>
.main {
padding: 1rem;
}
.stProgress > div > div > div > div {
background-image: linear-gradient(to right, #ff6b6b, #f06595);
}
.damage-card {
padding: 1rem;
border-radius: 0.5rem;
background: var(--background-color, #ffffff);
margin-bottom: 1rem;
border: 1px solid var(--border-color, #e0e0e0);
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
</style>
"""
if __name__ == "__main__":
main() |