File size: 11,428 Bytes
3db0aec 15526fe 3db0aec 9814e5f 3db0aec 15526fe 3db0aec dbd2162 60dab82 3db0aec 15526fe 3db0aec dbd2162 3db0aec dbd2162 3db0aec dbd2162 3db0aec dbd2162 3db0aec 4f207d0 3db0aec dbd2162 3db0aec dbd2162 3db0aec dbd2162 3db0aec 15526fe 9814e5f 3db0aec dbd2162 3db0aec dbd2162 3db0aec 4f207d0 3db0aec dbd2162 3db0aec dbd2162 3db0aec dbd2162 3db0aec dbd2162 3db0aec 9814e5f dbd2162 3db0aec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
```python
import streamlit as st
from transformers import ViTForImageClassification, ViTImageProcessor
from PIL import Image
import torch
import time
import gc
from knowledge_base import KNOWLEDGE_BASE, DAMAGE_TYPES
from rag_utils import RAGSystem
# Constants
MAX_FILE_SIZE = 5 * 1024 * 1024 # 5MB
MAX_IMAGE_SIZE = 1024 # Maximum dimension for images
# Cache the model and RAG system globally
MODEL = None
PROCESSOR = None
RAG_SYSTEM = None
def cleanup_memory():
"""Clean up memory and GPU cache"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def init_session_state():
"""Initialize session state variables"""
if 'history' not in st.session_state:
st.session_state.history = []
if 'dark_mode' not in st.session_state:
st.session_state.dark_mode = False
@st.cache_resource(show_spinner="Loading AI model...")
def load_model():
"""Load and cache the model and processor"""
try:
model_name = "google/vit-base-patch16-224"
model = ViTForImageClassification.from_pretrained(
model_name,
num_labels=len(DAMAGE_TYPES),
ignore_mismatched_sizes=True,
device_map="auto"
)
processor = ViTImageProcessor.from_pretrained(model_name)
return model, processor
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None, None
def init_rag_system():
"""Initialize the RAG system with knowledge base"""
global RAG_SYSTEM
if RAG_SYSTEM is None:
RAG_SYSTEM = RAGSystem()
RAG_SYSTEM.initialize_knowledge_base(KNOWLEDGE_BASE)
def validate_image(image):
"""Validate image size and format"""
if image.size[0] * image.size[1] > 1024 * 1024:
st.warning("Large image detected. The image will be resized for better performance.")
if image.format not in ['JPEG', 'PNG']:
st.warning("Image format not optimal. Consider using JPEG or PNG for better performance.")
def preprocess_image(uploaded_file):
"""Preprocess and validate uploaded image"""
try:
image = Image.open(uploaded_file)
# Resize if image is too large
if max(image.size) > MAX_IMAGE_SIZE:
ratio = MAX_IMAGE_SIZE / max(image.size)
new_size = tuple([int(dim * ratio) for dim in image.size])
image = image.resize(new_size, Image.Resampling.LANCZOS)
return image
except Exception as e:
st.error(f"Error processing image: {str(e)}")
return None
def analyze_damage(image, model, processor):
"""Analyze structural damage in the image"""
try:
with torch.no_grad():
image = image.convert('RGB')
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
cleanup_memory()
return probs
except RuntimeError as e:
if "out of memory" in str(e):
cleanup_memory()
st.error("Out of memory. Please try with a smaller image.")
else:
st.error(f"Error analyzing image: {str(e)}")
return None
def get_custom_css():
"""Return custom CSS styles"""
return """
<style>
.main {
padding: 2rem;
}
.stProgress > div > div > div > div {
background-image: linear-gradient(to right, var(--progress-color, #ff6b6b), var(--progress-color-end, #f06595));
}
.damage-card {
padding: 1.5rem;
border-radius: 0.5rem;
background: var(--card-bg, #f8f9fa);
margin-bottom: 1rem;
border: 1px solid var(--border-color, #dee2e6);
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.damage-header {
font-size: 1.25rem;
font-weight: bold;
margin-bottom: 1rem;
color: var(--text-color, #212529);
}
.dark-mode {
background-color: #1a1a1a;
color: #ffffff;
}
.dark-mode .damage-card {
background: #2d2d2d;
border-color: #404040;
}
</style>
"""
def display_header():
"""Display application header"""
st.markdown(
"""
<div style='text-align: center; padding: 1rem;'>
<h1>ποΈ Structural Damage Analyzer Pro</h1>
<p style='font-size: 1.2rem;'>Advanced AI-powered structural damage assessment tool</p>
</div>
""",
unsafe_allow_html=True
)
def display_enhanced_analysis(damage_type, confidence):
"""Display enhanced analysis from RAG system"""
try:
enhanced_info = RAG_SYSTEM.get_enhanced_analysis(damage_type, confidence)
st.markdown("### π Enhanced Analysis")
with st.expander("π Technical Details", expanded=True):
for detail in enhanced_info["technical_details"]:
st.markdown(detail)
with st.expander("β οΈ Safety Considerations"):
for safety in enhanced_info["safety_considerations"]:
st.warning(safety)
with st.expander("π· Expert Recommendations"):
for rec in enhanced_info["expert_recommendations"]:
st.info(rec)
custom_query = st.text_input(
"Ask specific questions about this damage type:",
placeholder="E.g., What are the long-term implications of this damage?"
)
if custom_query:
custom_results = RAG_SYSTEM.get_enhanced_analysis(
damage_type,
confidence,
custom_query=custom_query
)
st.markdown("### π‘ Custom Query Results")
for category, results in custom_results.items():
if results:
st.markdown(f"**{category.replace('_', ' ').title()}:**")
for result in results:
st.markdown(result)
except Exception as e:
st.error(f"Error generating enhanced analysis: {str(e)}")
def display_analysis_results(predictions, analysis_time):
"""Display analysis results with damage details"""
st.markdown("### π Analysis Results")
st.markdown(f"*Analysis completed in {analysis_time:.2f} seconds*")
detected = False
for idx, prob in enumerate(predictions):
confidence = float(prob) * 100
if confidence > 15:
detected = True
damage_type = DAMAGE_TYPES[idx]['name']
cases = KNOWLEDGE_BASE[damage_type]
with st.expander(f"{damage_type.replace('_', ' ').title()} - {confidence:.1f}%", expanded=True):
st.markdown(
f"""
<style>
.stProgress > div > div > div > div {{
background-color: {DAMAGE_TYPES[idx]['color']} !important;
}}
</style>
""",
unsafe_allow_html=True
)
st.progress(confidence / 100)
tabs = st.tabs(["π Details", "π§ Repairs", "β οΈ Actions"])
with tabs[0]:
for case in cases:
st.markdown(f"""
- **Severity:** {case['severity']}
- **Description:** {case['description']}
- **Location:** {case['location']}
- **Required Expertise:** {case['required_expertise']}
""")
with tabs[1]:
for step in cases[0]['repair_method']:
st.markdown(f"β {step}")
st.info(f"**Estimated Cost:** {cases[0]['estimated_cost']}")
st.info(f"**Timeframe:** {cases[0]['timeframe']}")
with tabs[2]:
st.warning("**Immediate Actions Required:**")
st.markdown(cases[0]['immediate_action'])
st.success("**Prevention Measures:**")
st.markdown(cases[0]['prevention'])
# Display enhanced analysis
display_enhanced_analysis(damage_type, confidence)
if not detected:
st.info("No significant structural damage detected. Regular maintenance recommended.")
def main():
"""Main application function"""
init_session_state()
st.set_page_config(
page_title="Structural Damage Analyzer Pro",
page_icon="ποΈ",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown(get_custom_css(), unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.markdown("### βοΈ Settings")
st.session_state.dark_mode = st.toggle("Dark Mode", st.session_state.dark_mode)
st.markdown("### π Analysis History")
if st.session_state.history:
for item in st.session_state.history[-5:]:
st.markdown(f"- {item}")
display_header()
# Load model and initialize RAG system
global MODEL, PROCESSOR
if MODEL is None or PROCESSOR is None:
with st.spinner("Loading AI model..."):
MODEL, PROCESSOR = load_model()
if MODEL is None:
st.error("Failed to load model. Please refresh the page.")
return
init_rag_system()
# File upload
uploaded_file = st.file_uploader(
"Drag and drop or click to upload an image",
type=['jpg', 'jpeg', 'png'],
help="Supported formats: JPG, JPEG, PNG"
)
if uploaded_file:
try:
if uploaded_file.size > MAX_FILE_SIZE:
st.error("File size too large. Please upload an image smaller than 5MB.")
return
image = preprocess_image(uploaded_file)
if image is None:
return
validate_image(image)
col1, col2 = st.columns([1, 1])
with col1:
st.image(image, caption="Uploaded Structure", use_container_width=True)
with col2:
with st.spinner("π Analyzing damage..."):
start_time = time.time()
predictions = analyze_damage(image, MODEL, PROCESSOR)
analysis_time = time.time() - start_time
if predictions is not None:
display_analysis_results(predictions, analysis_time)
st.session_state.history.append(f"Analyzed image: {uploaded_file.name}")
except Exception as e:
cleanup_memory()
st.error(f"Error processing image: {str(e)}")
st.info("Please try uploading a different image.")
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center'>
<p>ποΈ Structural Damage Analyzer Pro | Built with Streamlit & Transformers</p>
<p style='font-size: 0.8rem;'>For professional use only. Always consult with a structural engineer.</p>
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
main()
``` |