File size: 11,115 Bytes
29bcdf2
 
 
 
 
0e5cd3a
 
 
 
435eb8d
d58b258
435eb8d
d58b258
 
 
 
 
 
 
 
 
 
 
29bcdf2
 
d58b258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5cd3a
 
 
 
 
 
 
 
 
 
d8f1dce
0e5cd3a
 
 
 
 
d58b258
0e5cd3a
 
 
d58b258
0e5cd3a
 
 
 
 
 
d58b258
0e5cd3a
 
 
 
 
 
d58b258
0e5cd3a
 
 
 
 
d58b258
0e5cd3a
 
d58b258
0e5cd3a
 
 
 
 
 
 
 
 
 
 
 
d58b258
0e5cd3a
 
d58b258
0e5cd3a
 
 
 
 
d58b258
0e5cd3a
 
5446b36
0e5cd3a
 
 
 
 
 
d58b258
0e5cd3a
 
 
 
 
d58b258
0e5cd3a
 
5446b36
0e5cd3a
 
 
 
 
 
 
d58b258
0e5cd3a
 
 
 
 
 
d58b258
0e5cd3a
 
 
 
 
 
d58b258
0e5cd3a
 
5446b36
0e5cd3a
 
 
 
 
d58b258
0e5cd3a
 
 
 
d58b258
0e5cd3a
 
d58b258
0e5cd3a
 
5446b36
d58b258
aed03ad
d58b258
 
 
 
 
29bcdf2
 
d58b258
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
from tensorflow.keras import layers, models
from tensorflow.keras.applications import EfficientNetB0
from tensorflow.keras.applications.efficientnet import preprocess_input
import joblib
import io
import os

# Add Cloudinary import
import cloudinary
import cloudinary.uploader
from cloudinary.utils import cloudinary_url

# Cloudinary Configuration
cloudinary.config(
    cloud_name = os.getenv("CLOUD"),
    api_key = os.getenv("API"),
    api_secret = os.getenv("SECRET"),
    secure=True
)

def upload_to_cloudinary(file_path, label):
    """
    Upload file to Cloudinary with specified label as folder
    """
    try:
        # Upload to Cloudinary
        upload_result = cloudinary.uploader.upload(
            file_path,
            folder=label,
            public_id=f"{label}_{os.path.basename(file_path)}"
        )

        # Generate optimized URLs
        optimize_url, _ = cloudinary_url(
            upload_result['public_id'],
            fetch_format="auto",
            quality="auto"
        )

        auto_crop_url, _ = cloudinary_url(
            upload_result['public_id'],
            width=500,
            height=500,
            crop="auto",
            gravity="auto"
        )

        return {
            "upload_result": upload_result,
            "optimize_url": optimize_url,
            "auto_crop_url": auto_crop_url
        }

    except Exception as e:
        return f"Error uploading to Cloudinary: {str(e)}"

def main():
    st.title("🨨 Phân loại đá")
    st.write("Tải lên hình ảnh của một viên đá để phân loại loại của nó.")

    # Load model and scaler
    model, scaler = load_model_and_scaler()
    if model is None or scaler is None:
        st.error("Không thể tải mô hình hoặc bộ chuẩn hóa. Vui lòng đảm bảo rằng cả hai tệp đều tồn tại.")
        return

    # Initialize session state
    if 'predictions' not in st.session_state:
        st.session_state.predictions = None
    if 'uploaded_image' not in st.session_state:
        st.session_state.uploaded_image = None

    col1, col2 = st.columns(2)

    with col1:
        st.subheader("Tải lên Hình ảnh")
        uploaded_file = st.file_uploader("Chọn hình ảnh...", type=["jpg", "jpeg", "png"])

        if uploaded_file is not None:
            try:
                image = Image.open(uploaded_file)
                st.image(image, caption="Hình ảnh đã tải lên", use_column_width=True)
                st.session_state.uploaded_image = image

                with st.spinner('Đang phân tích hình ảnh...'):
                    processed_image = preprocess_image(image, scaler)
                    prediction = model.predict(processed_image, verbose=0)

                    class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
                    st.session_state.predictions = get_top_predictions(prediction, class_names)

            except Exception as e:
                st.error(f"Lỗi khi xử lý hình ảnh: {str(e)}")

    with col2:
        st.subheader("Kết quả Dự đoán")
        if st.session_state.predictions:
            # Display main prediction
            top_class, top_confidence = st.session_state.predictions[0]
            st.markdown(
                f"""
                <div class='prediction-card'>
                    <h3>Dự đoán chính: Màu {top_class}</h3>
                    <h3>Độ tin cậy: {top_confidence:.2f}%</h3>
                </div>
                """,
                unsafe_allow_html=True
            )

            # Display confidence bar
            st.progress(top_confidence / 100)

            # Display top 5 predictions
            st.markdown("### 5 Dự đoán hàng đầu")
            st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)

            for class_name, confidence in st.session_state.predictions:
                st.markdown(
                    f"**Màu {class_name}: Độ tin cậy {confidence:.2f}%**"
                )
                st.progress(confidence / 100)

            st.markdown("</div>", unsafe_allow_html=True)

            # User Confirmation Section
            st.markdown("### Xác nhận độ chính xác của mô hình")
            st.write("Giúp chúng tôi cải thiện mô hình bằng cách xác nhận độ chính xác của dự đoán.")

            # Accuracy Radio Button
            accuracy_option = st.radio(
                "Dự đoán có chính xác không?",
                ["Chọn", "Chính xác", "Không chính xác"],
                index=0
            )

            if accuracy_option == "Không chính xác":
                # Input for correct grade
                correct_grade = st.selectbox(
                    "Chọn màu đá đúng:",
                    ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7'],
                    index=None,
                    placeholder="Chọn màu đúng"
                )

                # Upload button
                if st.button("Tải lên Hình ảnh để sửa chữa"):
                    if correct_grade and st.session_state.uploaded_image:
                        # Save the image temporarily
                        temp_image_path = f"temp_image_{hash(uploaded_file.name)}.png"
                        st.session_state.uploaded_image.save(temp_image_path)

                        try:
                            # Upload to Cloudinary
                            cloudinary_result = upload_to_cloudinary(temp_image_path, correct_grade)

                            if isinstance(cloudinary_result, dict):
                                st.success(f"Hình ảnh đã được tải lên thành công cho màu {correct_grade}")
                                st.write(f"URL công khai: {cloudinary_result['upload_result']['secure_url']}")
                            else:
                                st.error(cloudinary_result)

                            # Clean up temporary file
                            os.remove(temp_image_path)

                        except Exception as e:
                            st.error(f"Tải lên thất bại: {str(e)}")
                    else:
                        st.warning("Vui lòng chọn màu đúng trước khi tải lên.")
        else:
            st.info("Tải lên hình ảnh để xem các dự đoán.")

    st.markdown("---")
    st.markdown("Tạo bởi ❤️ với Streamlit")

def load_model_and_scaler():
    """Load the trained model and scaler"""
    try:
        model = tf.keras.models.load_model('mlp_model.h5')
        # Tải scaler đã lưu
        scaler = joblib.load('standard_scaler.pkl')
        return model, scaler
    except Exception as e:
        st.error(f"Error loading model or scaler: {str(e)}")
        return None, None

def color_histogram(image, bins=16):
    """Calculate color histogram features"""
    hist_r = cv2.calcHist([image], [0], None, [bins], [0, 256]).flatten()
    hist_g = cv2.calcHist([image], [1], None, [bins], [0, 256]).flatten()
    hist_b = cv2.calcHist([image], [2], None, [bins], [0, 256]).flatten()

    hist_r = hist_r / (np.sum(hist_r) + 1e-7)
    hist_g = hist_g / (np.sum(hist_g) + 1e-7)
    hist_b = hist_b / (np.sum(hist_b) + 1e-7)

    return np.concatenate([hist_r, hist_g, hist_b])

def color_moments(image):
    """Calculate color moments features"""
    img = image.astype(np.float32) / 255.0
    moments = []

    for i in range(3):
        channel = img[:,:,i]
        mean = np.mean(channel)
        std = np.std(channel) + 1e-7
        skewness = np.mean(((channel - mean) / std) ** 3) if std != 0 else 0
        moments.extend([mean, std, skewness])

    return np.array(moments)

def dominant_color_descriptor(image, k=3):
    """Calculate dominant color descriptor"""
    pixels = image.reshape(-1, 3).astype(np.float32)

    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
    flags = cv2.KMEANS_RANDOM_CENTERS

    try:
        _, labels, centers = cv2.kmeans(pixels, k, None, criteria, 10, flags)
        unique, counts = np.unique(labels, return_counts=True)
        percentages = counts / len(labels)
        return np.concatenate([centers.flatten(), percentages])
    except Exception:
        return np.zeros(k * 4)

def color_coherence_vector(image, k=3):
    """Calculate color coherence vector"""
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    gray = np.uint8(gray)

    _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    num_labels, labels = cv2.connectedComponents(binary)

    ccv = []
    for i in range(1, min(k+1, num_labels)):
        region_mask = (labels == i)
        total_pixels = np.sum(region_mask)
        ccv.extend([total_pixels, total_pixels])

    ccv.extend([0] * (2 * k - len(ccv)))
    return np.array(ccv[:2*k])

@st.cache_resource
def create_vit_feature_extractor():
    """Create and cache the ViT feature extractor"""
    input_shape = (256, 256, 3)
    inputs = layers.Input(shape=input_shape)
    x = layers.Lambda(preprocess_input)(inputs)

    base_model = EfficientNetB0(
        include_top=False,
        weights='imagenet',
        input_tensor=x
    )

    x = layers.GlobalAveragePooling2D()(base_model.output)
    return models.Model(inputs=inputs, outputs=x)

def extract_features(image):
    """Extract all features from an image"""
    # Traditional features
    hist_features = color_histogram(image)
    moment_features = color_moments(image)
    dominant_features = dominant_color_descriptor(image)
    ccv_features = color_coherence_vector(image)

    traditional_features = np.concatenate([
        hist_features,
        moment_features,
        dominant_features,
        ccv_features
    ])

    # Deep features using ViT
    feature_extractor = create_vit_feature_extractor()
    vit_features = feature_extractor.predict(
        np.expand_dims(image, axis=0),
        verbose=0
    )

    # Combine all features
    return np.concatenate([traditional_features, vit_features.flatten()])

def preprocess_image(image, scaler):
    """Preprocess the uploaded image"""
    # Convert to RGB if needed
    if image.mode != 'RGB':
        image = image.convert('RGB')

    # Convert to numpy array and resize
    img_array = np.array(image)
    img_array = cv2.resize(img_array, (256, 256))
    img_array = img_array.astype('float32') / 255.0

    # Extract all features
    features = extract_features(img_array)

    # Scale features using the provided scaler
    scaled_features = scaler.transform(features.reshape(1, -1))

    return scaled_features

def get_top_predictions(prediction, class_names):
    # Extract the top 5 predictions with confidence values
    probabilities = tf.nn.softmax(prediction[0]).numpy()
    top_indices = np.argsort(probabilities)[-5:][::-1]
    return [(class_names[i], probabilities[i] * 100) for i in top_indices]

if __name__ == "__main__":
    main()