Spaces:
Sleeping
Sleeping
File size: 11,115 Bytes
29bcdf2 0e5cd3a 435eb8d d58b258 435eb8d d58b258 29bcdf2 d58b258 0e5cd3a d8f1dce 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a 5446b36 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a 5446b36 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a 5446b36 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a d58b258 0e5cd3a 5446b36 d58b258 aed03ad d58b258 29bcdf2 d58b258 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
from tensorflow.keras import layers, models
from tensorflow.keras.applications import EfficientNetB0
from tensorflow.keras.applications.efficientnet import preprocess_input
import joblib
import io
import os
# Add Cloudinary import
import cloudinary
import cloudinary.uploader
from cloudinary.utils import cloudinary_url
# Cloudinary Configuration
cloudinary.config(
cloud_name = os.getenv("CLOUD"),
api_key = os.getenv("API"),
api_secret = os.getenv("SECRET"),
secure=True
)
def upload_to_cloudinary(file_path, label):
"""
Upload file to Cloudinary with specified label as folder
"""
try:
# Upload to Cloudinary
upload_result = cloudinary.uploader.upload(
file_path,
folder=label,
public_id=f"{label}_{os.path.basename(file_path)}"
)
# Generate optimized URLs
optimize_url, _ = cloudinary_url(
upload_result['public_id'],
fetch_format="auto",
quality="auto"
)
auto_crop_url, _ = cloudinary_url(
upload_result['public_id'],
width=500,
height=500,
crop="auto",
gravity="auto"
)
return {
"upload_result": upload_result,
"optimize_url": optimize_url,
"auto_crop_url": auto_crop_url
}
except Exception as e:
return f"Error uploading to Cloudinary: {str(e)}"
def main():
st.title("🨨 Phân loại đá")
st.write("Tải lên hình ảnh của một viên đá để phân loại loại của nó.")
# Load model and scaler
model, scaler = load_model_and_scaler()
if model is None or scaler is None:
st.error("Không thể tải mô hình hoặc bộ chuẩn hóa. Vui lòng đảm bảo rằng cả hai tệp đều tồn tại.")
return
# Initialize session state
if 'predictions' not in st.session_state:
st.session_state.predictions = None
if 'uploaded_image' not in st.session_state:
st.session_state.uploaded_image = None
col1, col2 = st.columns(2)
with col1:
st.subheader("Tải lên Hình ảnh")
uploaded_file = st.file_uploader("Chọn hình ảnh...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
try:
image = Image.open(uploaded_file)
st.image(image, caption="Hình ảnh đã tải lên", use_column_width=True)
st.session_state.uploaded_image = image
with st.spinner('Đang phân tích hình ảnh...'):
processed_image = preprocess_image(image, scaler)
prediction = model.predict(processed_image, verbose=0)
class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
st.session_state.predictions = get_top_predictions(prediction, class_names)
except Exception as e:
st.error(f"Lỗi khi xử lý hình ảnh: {str(e)}")
with col2:
st.subheader("Kết quả Dự đoán")
if st.session_state.predictions:
# Display main prediction
top_class, top_confidence = st.session_state.predictions[0]
st.markdown(
f"""
<div class='prediction-card'>
<h3>Dự đoán chính: Màu {top_class}</h3>
<h3>Độ tin cậy: {top_confidence:.2f}%</h3>
</div>
""",
unsafe_allow_html=True
)
# Display confidence bar
st.progress(top_confidence / 100)
# Display top 5 predictions
st.markdown("### 5 Dự đoán hàng đầu")
st.markdown("<div class='top-predictions'>", unsafe_allow_html=True)
for class_name, confidence in st.session_state.predictions:
st.markdown(
f"**Màu {class_name}: Độ tin cậy {confidence:.2f}%**"
)
st.progress(confidence / 100)
st.markdown("</div>", unsafe_allow_html=True)
# User Confirmation Section
st.markdown("### Xác nhận độ chính xác của mô hình")
st.write("Giúp chúng tôi cải thiện mô hình bằng cách xác nhận độ chính xác của dự đoán.")
# Accuracy Radio Button
accuracy_option = st.radio(
"Dự đoán có chính xác không?",
["Chọn", "Chính xác", "Không chính xác"],
index=0
)
if accuracy_option == "Không chính xác":
# Input for correct grade
correct_grade = st.selectbox(
"Chọn màu đá đúng:",
['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7'],
index=None,
placeholder="Chọn màu đúng"
)
# Upload button
if st.button("Tải lên Hình ảnh để sửa chữa"):
if correct_grade and st.session_state.uploaded_image:
# Save the image temporarily
temp_image_path = f"temp_image_{hash(uploaded_file.name)}.png"
st.session_state.uploaded_image.save(temp_image_path)
try:
# Upload to Cloudinary
cloudinary_result = upload_to_cloudinary(temp_image_path, correct_grade)
if isinstance(cloudinary_result, dict):
st.success(f"Hình ảnh đã được tải lên thành công cho màu {correct_grade}")
st.write(f"URL công khai: {cloudinary_result['upload_result']['secure_url']}")
else:
st.error(cloudinary_result)
# Clean up temporary file
os.remove(temp_image_path)
except Exception as e:
st.error(f"Tải lên thất bại: {str(e)}")
else:
st.warning("Vui lòng chọn màu đúng trước khi tải lên.")
else:
st.info("Tải lên hình ảnh để xem các dự đoán.")
st.markdown("---")
st.markdown("Tạo bởi ❤️ với Streamlit")
def load_model_and_scaler():
"""Load the trained model and scaler"""
try:
model = tf.keras.models.load_model('mlp_model.h5')
# Tải scaler đã lưu
scaler = joblib.load('standard_scaler.pkl')
return model, scaler
except Exception as e:
st.error(f"Error loading model or scaler: {str(e)}")
return None, None
def color_histogram(image, bins=16):
"""Calculate color histogram features"""
hist_r = cv2.calcHist([image], [0], None, [bins], [0, 256]).flatten()
hist_g = cv2.calcHist([image], [1], None, [bins], [0, 256]).flatten()
hist_b = cv2.calcHist([image], [2], None, [bins], [0, 256]).flatten()
hist_r = hist_r / (np.sum(hist_r) + 1e-7)
hist_g = hist_g / (np.sum(hist_g) + 1e-7)
hist_b = hist_b / (np.sum(hist_b) + 1e-7)
return np.concatenate([hist_r, hist_g, hist_b])
def color_moments(image):
"""Calculate color moments features"""
img = image.astype(np.float32) / 255.0
moments = []
for i in range(3):
channel = img[:,:,i]
mean = np.mean(channel)
std = np.std(channel) + 1e-7
skewness = np.mean(((channel - mean) / std) ** 3) if std != 0 else 0
moments.extend([mean, std, skewness])
return np.array(moments)
def dominant_color_descriptor(image, k=3):
"""Calculate dominant color descriptor"""
pixels = image.reshape(-1, 3).astype(np.float32)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
flags = cv2.KMEANS_RANDOM_CENTERS
try:
_, labels, centers = cv2.kmeans(pixels, k, None, criteria, 10, flags)
unique, counts = np.unique(labels, return_counts=True)
percentages = counts / len(labels)
return np.concatenate([centers.flatten(), percentages])
except Exception:
return np.zeros(k * 4)
def color_coherence_vector(image, k=3):
"""Calculate color coherence vector"""
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
gray = np.uint8(gray)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
num_labels, labels = cv2.connectedComponents(binary)
ccv = []
for i in range(1, min(k+1, num_labels)):
region_mask = (labels == i)
total_pixels = np.sum(region_mask)
ccv.extend([total_pixels, total_pixels])
ccv.extend([0] * (2 * k - len(ccv)))
return np.array(ccv[:2*k])
@st.cache_resource
def create_vit_feature_extractor():
"""Create and cache the ViT feature extractor"""
input_shape = (256, 256, 3)
inputs = layers.Input(shape=input_shape)
x = layers.Lambda(preprocess_input)(inputs)
base_model = EfficientNetB0(
include_top=False,
weights='imagenet',
input_tensor=x
)
x = layers.GlobalAveragePooling2D()(base_model.output)
return models.Model(inputs=inputs, outputs=x)
def extract_features(image):
"""Extract all features from an image"""
# Traditional features
hist_features = color_histogram(image)
moment_features = color_moments(image)
dominant_features = dominant_color_descriptor(image)
ccv_features = color_coherence_vector(image)
traditional_features = np.concatenate([
hist_features,
moment_features,
dominant_features,
ccv_features
])
# Deep features using ViT
feature_extractor = create_vit_feature_extractor()
vit_features = feature_extractor.predict(
np.expand_dims(image, axis=0),
verbose=0
)
# Combine all features
return np.concatenate([traditional_features, vit_features.flatten()])
def preprocess_image(image, scaler):
"""Preprocess the uploaded image"""
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Convert to numpy array and resize
img_array = np.array(image)
img_array = cv2.resize(img_array, (256, 256))
img_array = img_array.astype('float32') / 255.0
# Extract all features
features = extract_features(img_array)
# Scale features using the provided scaler
scaled_features = scaler.transform(features.reshape(1, -1))
return scaled_features
def get_top_predictions(prediction, class_names):
# Extract the top 5 predictions with confidence values
probabilities = tf.nn.softmax(prediction[0]).numpy()
top_indices = np.argsort(probabilities)[-5:][::-1]
return [(class_names[i], probabilities[i] * 100) for i in top_indices]
if __name__ == "__main__":
main()
|