File size: 9,953 Bytes
dacbe6c
 
 
 
7561365
dacbe6c
 
 
8653b6e
3aedaee
d5a0042
dacbe6c
3aedaee
7561365
8653b6e
89bc003
3aedaee
d5a0042
89bc003
8653b6e
89bc003
 
 
8653b6e
89bc003
8653b6e
 
89bc003
7561365
d5a0042
7561365
d5a0042
 
7561365
d5a0042
 
 
 
 
3aedaee
7561365
 
d5a0042
3aedaee
d5a0042
 
7561365
 
 
3aedaee
89bc003
7561365
d5a0042
3aedaee
89bc003
 
 
 
d5a0042
89bc003
 
d5a0042
3aedaee
7561365
d5a0042
 
7561365
 
 
 
d5a0042
89bc003
 
 
 
 
3aedaee
89bc003
 
 
 
 
 
 
 
d5a0042
 
 
7561365
 
d5a0042
 
7561365
 
 
 
 
89bc003
7561365
3aedaee
7561365
 
 
 
 
 
3aedaee
8653b6e
d5a0042
7561365
d5a0042
7561365
d5a0042
 
 
 
 
 
 
 
3aedaee
d5a0042
 
 
 
dacbe6c
 
 
d5a0042
dacbe6c
 
 
 
 
 
 
 
 
 
 
d5a0042
 
 
 
 
 
 
 
 
 
3aedaee
dacbe6c
d5a0042
 
 
dacbe6c
 
 
d5a0042
 
 
 
 
 
 
dacbe6c
 
3aedaee
89bc003
8653b6e
d5a0042
dacbe6c
 
 
 
d5a0042
 
dacbe6c
 
 
 
 
 
3aedaee
89bc003
d5a0042
 
dacbe6c
3aedaee
d5a0042
8653b6e
d5a0042
89bc003
d5a0042
dacbe6c
 
d5a0042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b5ebe
d5a0042
dacbe6c
7561365
d5a0042
3aedaee
dacbe6c
 
 
 
3aedaee
dacbe6c
 
 
d5a0042
3aedaee
 
 
 
d5a0042
3aedaee
 
d5a0042
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import cv2
import numpy as np
import csv
import math
import torch
import tempfile
import os
import gradio as gr
import time
import io
from contextlib import redirect_stdout

# Set up device for torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[INFO] Using device: {device}")

# Try to load the RAFT model from torch.hub.
# If it fails, we fall back to OpenCV optical flow.
try:
    print("[INFO] Attempting to load RAFT model from torch.hub...")
    raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
    raft_model = raft_model.to(device)
    raft_model.eval()
    print("[INFO] RAFT model loaded successfully.")
except Exception as e:
    print("[ERROR] Error loading RAFT model:", e)
    print("[INFO] Falling back to OpenCV Farneback optical flow.")
    raft_model = None

def generate_motion_csv(video_file, output_csv=None):
    """
    Generates a CSV file with motion data (columns: frame, mag, ang, zoom) from an input video.
    Uses RAFT if available, otherwise falls back to OpenCV's Farneback optical flow.
    """
    start_time = time.time()
    if output_csv is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
        output_csv = temp_file.name
        temp_file.close()
    
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise ValueError("[ERROR] Could not open video file for CSV generation.")
    
    print(f"[INFO] Generating motion CSV for video: {video_file}")
    with open(output_csv, 'w', newline='') as csvfile:
        fieldnames = ['frame', 'mag', 'ang', 'zoom']
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writeheader()
        
        ret, first_frame = cap.read()
        if not ret:
            raise ValueError("[ERROR] Cannot read first frame from video.")
        
        if raft_model is not None:
            first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
            prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
            prev_tensor = prev_tensor.to(device)
            print("[INFO] Using RAFT model for optical flow computation.")
        else:
            prev_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
            print("[INFO] Using OpenCV Farneback optical flow for computation.")
        
        frame_idx = 1
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        print(f"[INFO] Total frames to process: {total_frames}")
        while True:
            ret, frame = cap.read()
            if not ret:
                break

            if raft_model is not None:
                curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
                curr_tensor = curr_tensor.to(device)
                with torch.no_grad():
                    flow_low, flow_up = raft_model(prev_tensor, curr_tensor, iters=20, test_mode=True)
                flow = flow_up[0].permute(1, 2, 0).cpu().numpy()
                prev_tensor = curr_tensor.clone()
            else:
                curr_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None,
                                                    pyr_scale=0.5, levels=3, winsize=15,
                                                    iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
                prev_gray = curr_gray

            # Compute median magnitude and angle of the optical flow.
            mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1], angleInDegrees=True)
            median_mag = np.median(mag)
            median_ang = np.median(ang)
            
            # Compute a "zoom factor": fraction of pixels moving away from the center.
            h, w = flow.shape[:2]
            center_x, center_y = w / 2, h / 2
            x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
            x_offset = x_coords - center_x
            y_offset = y_coords - center_y
            dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
            zoom_factor = np.count_nonzero(dot > 0) / (w * h)
            
            writer.writerow({
                'frame': frame_idx,
                'mag': median_mag,
                'ang': median_ang,
                'zoom': zoom_factor
            })
            
            if frame_idx % 10 == 0 or frame_idx == total_frames:
                print(f"[INFO] Processed frame {frame_idx}/{total_frames}")
            frame_idx += 1

    cap.release()
    elapsed = time.time() - start_time
    print(f"[INFO] Motion CSV generated: {output_csv} in {elapsed:.2f} seconds")
    return output_csv

def read_motion_csv(csv_filename):
    """
    Reads a motion CSV file (with columns: frame, mag, ang, zoom) and computes a cumulative
    offset per frame for stabilization.
    
    Returns:
        A dictionary mapping frame numbers to (dx, dy) offsets.
    """
    print(f"[INFO] Reading motion CSV: {csv_filename}")
    motion_data = {}
    cumulative_dx = 0.0
    cumulative_dy = 0.0
    with open(csv_filename, 'r') as csvfile:
        reader = csv.DictReader(csvfile)
        for row in reader:
            frame_num = int(row['frame'])
            mag = float(row['mag'])
            ang = float(row['ang'])
            rad = math.radians(ang)
            dx = mag * math.cos(rad)
            dy = mag * math.sin(rad)
            cumulative_dx += dx
            cumulative_dy += dy
            motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
    print("[INFO] Completed reading motion CSV.")
    return motion_data

def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, output_file=None):
    """
    Stabilizes the input video using motion data from the CSV file.
    """
    start_time = time.time()
    print(f"[INFO] Starting stabilization using CSV: {csv_file}")
    motion_data = read_motion_csv(csv_file)
    
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise ValueError("[ERROR] Could not open video file for stabilization.")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    print(f"[INFO] Video properties - FPS: {fps}, Width: {width}, Height: {height}")
    
    if output_file is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
        output_file = temp_file.name
        temp_file.close()
    
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
    
    frame_idx = 1
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    print(f"[INFO] Total frames to stabilize: {total_frames}")
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        
        # Optionally apply zoom (resize and center-crop)
        if zoom != 1.0:
            zoomed_frame = cv2.resize(frame, None, fx=zoom, fy=zoom, interpolation=cv2.INTER_LINEAR)
            zoomed_h, zoomed_w = zoomed_frame.shape[:2]
            start_x = max((zoomed_w - width) // 2, 0)
            start_y = max((zoomed_h - height) // 2, 0)
            frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
        
        dx, dy = motion_data.get(frame_idx, (0, 0))
        transform = np.array([[1, 0, dx],
                              [0, 1, dy]], dtype=np.float32)
        stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
        
        out.write(stabilized_frame)
        if frame_idx % 10 == 0 or frame_idx == total_frames:
            print(f"[INFO] Stabilized frame {frame_idx}/{total_frames}")
        frame_idx += 1
    
    cap.release()
    out.release()
    elapsed = time.time() - start_time
    print(f"[INFO] Stabilized video saved to: {output_file} in {elapsed:.2f} seconds")
    return output_file

def process_video_ai(video_file, zoom):
    """
    Gradio interface function:
      - Generates motion data (CSV) from the input video using an AI model (RAFT if available, else Farneback).
      - Stabilizes the video based on the generated motion data.
    
    Returns:
        Tuple containing the original video file path, the stabilized video file path, and log output.
    """
    log_buffer = io.StringIO()
    with redirect_stdout(log_buffer):
        if isinstance(video_file, dict):
            video_file = video_file.get("name", None)
        if video_file is None:
            raise ValueError("[ERROR] Please upload a video file.")
    
        print("[INFO] Starting AI-powered video processing...")
        csv_file = generate_motion_csv(video_file)
        stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom)
        print("[INFO] Video processing complete.")
    logs = log_buffer.getvalue()
    return video_file, stabilized_path, logs

# Build the Gradio UI.
with gr.Blocks() as demo:
    gr.Markdown("# AI-Powered Video Stabilization")
    gr.Markdown("Upload a video and select a zoom factor. The system will generate motion data using an AI model (RAFT if available) and then stabilize the video.")
    
    with gr.Row():
        with gr.Column():
            video_input = gr.Video(label="Input Video")
            zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
            process_button = gr.Button("Process Video")
        with gr.Column():
            original_video = gr.Video(label="Original Video")
            stabilized_video = gr.Video(label="Stabilized Video")
            logs_output = gr.Textbox(label="Logs", lines=10)
    
    process_button.click(
        fn=process_video_ai,
        inputs=[video_input, zoom_slider],
        outputs=[original_video, stabilized_video, logs_output]
    )

demo.launch()