File size: 9,953 Bytes
dacbe6c 7561365 dacbe6c 8653b6e 3aedaee d5a0042 dacbe6c 3aedaee 7561365 8653b6e 89bc003 3aedaee d5a0042 89bc003 8653b6e 89bc003 8653b6e 89bc003 8653b6e 89bc003 7561365 d5a0042 7561365 d5a0042 7561365 d5a0042 3aedaee 7561365 d5a0042 3aedaee d5a0042 7561365 3aedaee 89bc003 7561365 d5a0042 3aedaee 89bc003 d5a0042 89bc003 d5a0042 3aedaee 7561365 d5a0042 7561365 d5a0042 89bc003 3aedaee 89bc003 d5a0042 7561365 d5a0042 7561365 89bc003 7561365 3aedaee 7561365 3aedaee 8653b6e d5a0042 7561365 d5a0042 7561365 d5a0042 3aedaee d5a0042 dacbe6c d5a0042 dacbe6c d5a0042 3aedaee dacbe6c d5a0042 dacbe6c d5a0042 dacbe6c 3aedaee 89bc003 8653b6e d5a0042 dacbe6c d5a0042 dacbe6c 3aedaee 89bc003 d5a0042 dacbe6c 3aedaee d5a0042 8653b6e d5a0042 89bc003 d5a0042 dacbe6c d5a0042 29b5ebe d5a0042 dacbe6c 7561365 d5a0042 3aedaee dacbe6c 3aedaee dacbe6c d5a0042 3aedaee d5a0042 3aedaee d5a0042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import cv2
import numpy as np
import csv
import math
import torch
import tempfile
import os
import gradio as gr
import time
import io
from contextlib import redirect_stdout
# Set up device for torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[INFO] Using device: {device}")
# Try to load the RAFT model from torch.hub.
# If it fails, we fall back to OpenCV optical flow.
try:
print("[INFO] Attempting to load RAFT model from torch.hub...")
raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
raft_model = raft_model.to(device)
raft_model.eval()
print("[INFO] RAFT model loaded successfully.")
except Exception as e:
print("[ERROR] Error loading RAFT model:", e)
print("[INFO] Falling back to OpenCV Farneback optical flow.")
raft_model = None
def generate_motion_csv(video_file, output_csv=None):
"""
Generates a CSV file with motion data (columns: frame, mag, ang, zoom) from an input video.
Uses RAFT if available, otherwise falls back to OpenCV's Farneback optical flow.
"""
start_time = time.time()
if output_csv is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
output_csv = temp_file.name
temp_file.close()
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
raise ValueError("[ERROR] Could not open video file for CSV generation.")
print(f"[INFO] Generating motion CSV for video: {video_file}")
with open(output_csv, 'w', newline='') as csvfile:
fieldnames = ['frame', 'mag', 'ang', 'zoom']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
ret, first_frame = cap.read()
if not ret:
raise ValueError("[ERROR] Cannot read first frame from video.")
if raft_model is not None:
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
prev_tensor = prev_tensor.to(device)
print("[INFO] Using RAFT model for optical flow computation.")
else:
prev_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
print("[INFO] Using OpenCV Farneback optical flow for computation.")
frame_idx = 1
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"[INFO] Total frames to process: {total_frames}")
while True:
ret, frame = cap.read()
if not ret:
break
if raft_model is not None:
curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
curr_tensor = curr_tensor.to(device)
with torch.no_grad():
flow_low, flow_up = raft_model(prev_tensor, curr_tensor, iters=20, test_mode=True)
flow = flow_up[0].permute(1, 2, 0).cpu().numpy()
prev_tensor = curr_tensor.clone()
else:
curr_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None,
pyr_scale=0.5, levels=3, winsize=15,
iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
prev_gray = curr_gray
# Compute median magnitude and angle of the optical flow.
mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1], angleInDegrees=True)
median_mag = np.median(mag)
median_ang = np.median(ang)
# Compute a "zoom factor": fraction of pixels moving away from the center.
h, w = flow.shape[:2]
center_x, center_y = w / 2, h / 2
x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
x_offset = x_coords - center_x
y_offset = y_coords - center_y
dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
writer.writerow({
'frame': frame_idx,
'mag': median_mag,
'ang': median_ang,
'zoom': zoom_factor
})
if frame_idx % 10 == 0 or frame_idx == total_frames:
print(f"[INFO] Processed frame {frame_idx}/{total_frames}")
frame_idx += 1
cap.release()
elapsed = time.time() - start_time
print(f"[INFO] Motion CSV generated: {output_csv} in {elapsed:.2f} seconds")
return output_csv
def read_motion_csv(csv_filename):
"""
Reads a motion CSV file (with columns: frame, mag, ang, zoom) and computes a cumulative
offset per frame for stabilization.
Returns:
A dictionary mapping frame numbers to (dx, dy) offsets.
"""
print(f"[INFO] Reading motion CSV: {csv_filename}")
motion_data = {}
cumulative_dx = 0.0
cumulative_dy = 0.0
with open(csv_filename, 'r') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
frame_num = int(row['frame'])
mag = float(row['mag'])
ang = float(row['ang'])
rad = math.radians(ang)
dx = mag * math.cos(rad)
dy = mag * math.sin(rad)
cumulative_dx += dx
cumulative_dy += dy
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
print("[INFO] Completed reading motion CSV.")
return motion_data
def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, output_file=None):
"""
Stabilizes the input video using motion data from the CSV file.
"""
start_time = time.time()
print(f"[INFO] Starting stabilization using CSV: {csv_file}")
motion_data = read_motion_csv(csv_file)
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
raise ValueError("[ERROR] Could not open video file for stabilization.")
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"[INFO] Video properties - FPS: {fps}, Width: {width}, Height: {height}")
if output_file is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
output_file = temp_file.name
temp_file.close()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
frame_idx = 1
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"[INFO] Total frames to stabilize: {total_frames}")
while True:
ret, frame = cap.read()
if not ret:
break
# Optionally apply zoom (resize and center-crop)
if zoom != 1.0:
zoomed_frame = cv2.resize(frame, None, fx=zoom, fy=zoom, interpolation=cv2.INTER_LINEAR)
zoomed_h, zoomed_w = zoomed_frame.shape[:2]
start_x = max((zoomed_w - width) // 2, 0)
start_y = max((zoomed_h - height) // 2, 0)
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
dx, dy = motion_data.get(frame_idx, (0, 0))
transform = np.array([[1, 0, dx],
[0, 1, dy]], dtype=np.float32)
stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
out.write(stabilized_frame)
if frame_idx % 10 == 0 or frame_idx == total_frames:
print(f"[INFO] Stabilized frame {frame_idx}/{total_frames}")
frame_idx += 1
cap.release()
out.release()
elapsed = time.time() - start_time
print(f"[INFO] Stabilized video saved to: {output_file} in {elapsed:.2f} seconds")
return output_file
def process_video_ai(video_file, zoom):
"""
Gradio interface function:
- Generates motion data (CSV) from the input video using an AI model (RAFT if available, else Farneback).
- Stabilizes the video based on the generated motion data.
Returns:
Tuple containing the original video file path, the stabilized video file path, and log output.
"""
log_buffer = io.StringIO()
with redirect_stdout(log_buffer):
if isinstance(video_file, dict):
video_file = video_file.get("name", None)
if video_file is None:
raise ValueError("[ERROR] Please upload a video file.")
print("[INFO] Starting AI-powered video processing...")
csv_file = generate_motion_csv(video_file)
stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom)
print("[INFO] Video processing complete.")
logs = log_buffer.getvalue()
return video_file, stabilized_path, logs
# Build the Gradio UI.
with gr.Blocks() as demo:
gr.Markdown("# AI-Powered Video Stabilization")
gr.Markdown("Upload a video and select a zoom factor. The system will generate motion data using an AI model (RAFT if available) and then stabilize the video.")
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Input Video")
zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
process_button = gr.Button("Process Video")
with gr.Column():
original_video = gr.Video(label="Original Video")
stabilized_video = gr.Video(label="Stabilized Video")
logs_output = gr.Textbox(label="Logs", lines=10)
process_button.click(
fn=process_video_ai,
inputs=[video_input, zoom_slider],
outputs=[original_video, stabilized_video, logs_output]
)
demo.launch()
|