metadata
title: Manufacturing Downtime Prediction API
emoji: π
colorFrom: green
colorTo: red
sdk: docker
pinned: false
license: apache-2.0
Manufacturing Downtime Prediction
Project Links:
Background
- The Manufacturing Downtime Dataset contains information about the operational parameters of various machines and their downtime records.
- Analyze machine performance, predict potential failures, and develop predictive maintenance strategies based on operational parameters.
- Features
- Torque(Nm)
- Hydraulic_Pressure(bar)
- Cutting(kN)
- Coolant_Pressure(bar)
- Spindle_Speed(RPM)
- Coolant_Temperature
- Target
- Downtime
Directory Tree
βββ app
β βββ __init__.py
β βββ main.py
β βββ modelling.py
β βββ inference.py
βββ README.md
βββ requirements.txt
βββ Manufacturing_Downtime_Dataset.csv
βββ .gitignore
Run Webapp Locally
Clone the project
git clone https://github.com/sudhanshu2198/Manufacturing-Downtime-Prediction-API
Change to project directory
cd Manufacturing-Downtime-Prediction-API
Create Virtaul Environment and install dependencies
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
Run Locally
uvicorn app.main:app
cURL Commands
- Upload
Request
curl -X 'POST' \
'http://127.0.0.1:8000/upload/' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'uploaded_file=@Manufacturing_Downtime_Dataset.csv;type=text/csv'
Response
{
"file": "Manufacturing_Downtime_Dataset.csv",
"content": "text/csv",
"path": "dataset.csv"
}
- Train
Request
curl -X 'POST' \
'http://127.0.0.1:8000/train/' \
-H 'accept: application/json' \
-d ''
Response
{
"Accuracy": 0.9897750511247444,
"F1_Score": 0.9896049896049895
}
- Predict
Request 1
curl -X 'POST' \
'http://127.0.0.1:8000/predict/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"Torque": 28.38124,
"Hydraulic_Pressure": 131.265854,
"Cutting": 2.01,
"Coolant_Pressure": 4.982836,
"Spindle_Speed": 20033.0,
"Coolant_Temperature": 20.1
}'
Response 1
{
"Downtime": "No",
"Confidence": 0.87
}
Request 2
curl -X 'POST' \
'http://127.0.0.1:8000/predict/' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"Torque": 25.614444,
"Hydraulic_Pressure": 98.7,
"Cutting": 3.49,
"Coolant_Pressure": 6.839413,
"Spindle_Speed": 18638.0,
"Coolant_Temperature": 24.4
}'
Response 2
{
"Downtime": "Yes",
"Confidence": 0.98
}