Spaces:
Running
Running
File size: 18,676 Bytes
099e67a c5e1e79 099e67a f13386c 099e67a c5e1e79 099e67a f4eeb19 099e67a d8af6ac f4eeb19 099e67a f4eeb19 099e67a f13386c 099e67a f13386c 8a5a9ab d8af6ac f4eeb19 8a5a9ab f4eeb19 8a5a9ab f13386c 8a5a9ab f13386c 8a5a9ab f13386c f4eeb19 f13386c f4eeb19 f13386c 8a5a9ab f13386c 8a5a9ab 93be02b f13386c f4eeb19 f13386c 8a5a9ab f4eeb19 f13386c 8a5a9ab f13386c 93be02b f13386c f4eeb19 93be02b f13386c 93be02b f13386c f4eeb19 f13386c 93be02b f13386c 93be02b f4eeb19 f13386c 93be02b f13386c 8a5a9ab f13386c 8a5a9ab f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c d8af6ac 93be02b d8af6ac f4eeb19 d8af6ac cde3785 d8af6ac f4eeb19 d8af6ac f13386c f4eeb19 f13386c 93be02b d8af6ac f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c 93be02b f13386c f4eeb19 f13386c 93be02b f4eeb19 f13386c f4eeb19 c5e1e79 8a5a9ab f13386c 099e67a c5e1e79 099e67a 93be02b f13386c f4eeb19 f13386c f4eeb19 93be02b f4eeb19 93be02b f4eeb19 93be02b f4eeb19 93be02b f4eeb19 93be02b f4eeb19 93be02b f4eeb19 93be02b f4eeb19 39c7fb4 93be02b f4eeb19 f13386c f4eeb19 099e67a f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 099e67a f13386c 93be02b f4eeb19 f13386c f4eeb19 f13386c f4eeb19 099e67a f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 099e67a f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c 099e67a f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 099e67a 8a5a9ab c5e1e79 099e67a f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 f13386c f4eeb19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import gradio as gr
from langchain_text_splitters import MarkdownHeaderTextSplitter, RecursiveCharacterTextSplitter
from langchain.schema import Document
from typing import List, Dict, Any, Tuple
import logging
import re
import base64
import mimetypes
from datasets import Dataset
from huggingface_hub import HfApi, get_token
import huggingface_hub
import os
from mistralai import Mistral
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# --- Mistral OCR Setup ---
api_key = os.environ.get("MISTRAL_API_KEY")
hf_token_global = None
client = None
if not api_key:
logger.warning("MISTRAL_API_KEY not set. Attempting to use Hugging Face token.")
api_key = get_token()
if api_key:
logger.info("Using Hugging Face token as MISTRAL_API_KEY.")
else:
logger.warning("No API key found.")
if api_key:
try:
client = Mistral(api_key=api_key)
logger.info("Mistral client initialized successfully.")
except Exception as e:
logger.error(f"Failed to initialize Mistral client: {e}", exc_info=True)
raise RuntimeError(f"Failed to initialize Mistral client: {e}")
else:
logger.error("Mistral API key not available. OCR will fail.")
# --- Helper Functions ---
def encode_image_bytes(image_bytes: bytes) -> str:
"""Encodes image bytes to a base64 string."""
return base64.b64encode(image_bytes).decode('utf-8')
def extract_images_from_markdown(markdown_text: str) -> Dict[str, str]:
"""
Extracts base64 image data URIs from markdown and maps them to reference IDs.
Returns a dictionary mapping reference IDs to base64 data URIs.
"""
image_map = {}
img_refs = re.findall(r"!\[.*?\]\((data:image/[a-zA-Z+]+;base64,[A-Za-z0-9+/=]+)\)", markdown_text)
for idx, img_uri in enumerate(img_refs):
ref_id = f"img_ref_{idx+1}"
image_map[ref_id] = img_uri
return image_map
def replace_image_references(markdown_text: str, image_map: Dict[str, str]) -> str:
"""
Replaces base64 image data URIs in markdown with reference IDs (e.g., img_ref_1).
"""
updated_markdown = markdown_text
for ref_id, img_uri in image_map.items():
escaped_uri = re.escape(img_uri)
pattern = r"(!\[.*?\]\()" + escaped_uri + r"(\))"
updated_markdown = re.sub(pattern, f"\\1{ref_id}\\2", updated_markdown)
return updated_markdown
def get_combined_markdown(ocr_response: Any) -> Tuple[str, str, Dict[str, str]]:
"""Combines markdown from OCR pages, replacing image IDs with base64 data URIs."""
processed_markdowns = []
raw_markdowns = []
image_data_map = {}
if not hasattr(ocr_response, 'pages') or not ocr_response.pages:
logger.warning("OCR response has no 'pages' attribute or pages list is empty.")
return "", "", {}
try:
for page_idx, page in enumerate(ocr_response.pages):
if hasattr(page, 'images') and page.images:
logger.info(f"Page {page_idx}: Found {len(page.images)} images.")
for img in page.images:
if hasattr(img, 'id') and hasattr(img, 'image_base64') and img.image_base64:
image_data_map[img.id] = img.image_base64
logger.debug(f"Page {page_idx}: Image ID {img.id} added to image_data_map.")
else:
logger.warning(f"Page {page_idx}: Image object lacks 'id' or valid 'image_base64'. Image: {img}")
else:
logger.info(f"Page {page_idx}: No images found.")
if not hasattr(page, 'markdown'):
logger.warning(f"Page {page_idx} lacks 'markdown' attribute. Skipping.")
continue
current_raw_markdown = page.markdown if page.markdown else ""
raw_markdowns.append(current_raw_markdown)
current_processed_markdown = current_raw_markdown
img_refs = re.findall(r"!\[.*?\]\((.*?)\)", current_processed_markdown)
logger.debug(f"Page {page_idx}: Found {len(img_refs)} image references in markdown.")
for img_id in img_refs:
if img_id in image_data_map:
base64_data_uri = image_data_map[img_id]
escaped_img_id = re.escape(img_id)
pattern = r"(!\[.*?\]\()" + escaped_img_id + r"(\))"
if re.search(pattern, current_processed_markdown):
current_processed_markdown = re.sub(
pattern,
r"\1" + base64_data_uri + r"\2",
current_processed_markdown
)
logger.debug(f"Page {page_idx}: Replaced image ID {img_id} with base64 data URI.")
elif not img_id.startswith(('http:', 'https:', 'data:')):
logger.warning(f"Page {page_idx}: Image ID '{img_id}' not in image data.")
processed_markdowns.append(current_processed_markdown)
logger.info(f"Processed {len(processed_markdowns)} pages with {len(image_data_map)} images.")
return "\n\n".join(processed_markdowns), "\n\n".join(raw_markdowns), image_data_map
except Exception as e:
logger.error(f"Error processing OCR response markdown: {e}", exc_info=True)
raise
def perform_ocr_file(file_obj: Any) -> Tuple[str, str, Dict[str, str]]:
"""Performs OCR on an uploaded file using Mistral API."""
if not client:
return "Error: Mistral client not initialized.", "", {}
if not file_obj:
return "Error: No file provided.", "", {}
try:
file_path = file_obj.name
file_name = getattr(file_obj, 'orig_name', os.path.basename(file_path))
logger.info(f"Performing OCR on file: {file_name}")
file_ext = os.path.splitext(file_name)[1].lower()
ocr_response = None
uploaded_file_id = None
if file_ext == '.pdf':
try:
with open(file_path, "rb") as f:
file_content = f.read()
logger.info(f"Uploading PDF {file_name} to Mistral...")
uploaded_pdf = client.files.upload(
file={
"file_name": file_name,
"content": file_content,
},
purpose="ocr"
)
uploaded_file_id = uploaded_pdf.id
logger.info(f"PDF uploaded successfully. File ID: {uploaded_file_id}")
signed_url_response = client.files.get_signed_url(file_id=uploaded_file_id)
ocr_response = client.ocr.process(
model="mistral-ocr-latest",
document={"type": "document_url", "document_url": signed_url_response.url},
include_image_base64=True
)
logger.info(f"OCR response received: {ocr_response}")
finally:
if uploaded_file_id:
try:
client.files.delete(file_id=uploaded_file_id)
except Exception as delete_err:
logger.warning(f"Failed to delete temporary file {uploaded_file_id}: {delete_err}")
elif file_ext in ['.png', '.jpg', '.jpeg', '.webp', '.bmp']:
with open(file_path, "rb") as f:
image_bytes = f.read()
if not image_bytes:
return f"Error: Uploaded image file '{file_name}' is empty.", "", {}
base64_encoded_image = encode_image_bytes(image_bytes)
mime_type, _ = mimetypes.guess_type(file_path)
mime_type = mime_type or 'image/jpeg'
data_uri = f"data:{mime_type};base64,{base64_encoded_image}"
ocr_response = client.ocr.process(
model="mistral-ocr-latest",
document={"type": "image_url", "image_url": data_uri},
include_image_base64=True
)
logger.info(f"OCR response received: {ocr_response}")
else:
return f"Unsupported file type: '{file_name}'.", "", {}
if ocr_response:
processed_md, raw_md, img_map = get_combined_markdown(ocr_response)
logger.info(f"Processed markdown length: {len(processed_md)}")
return processed_md, raw_md, img_map
return f"Error: OCR failed for '{file_name}'.", "", {}
except Exception as e:
logger.error(f"Error during OCR: {e}", exc_info=True)
return f"Error during OCR: {str(e)}", "", {}
def chunk_markdown(
markdown_text_with_images: str,
chunk_size: int = 1000,
chunk_overlap: int = 200,
strip_headers: bool = True
) -> List[Document]:
"""Chunks markdown text, preserving headers in metadata and extracting images."""
if not markdown_text_with_images or not markdown_text_with_images.strip():
logger.warning("chunk_markdown received empty input.")
return []
# Extract images and replace with reference IDs
image_map = extract_images_from_markdown(markdown_text_with_images)
updated_markdown = replace_image_references(markdown_text_with_images, image_map)
logger.info(f"Extracted {len(image_map)} images from markdown.")
headers_to_split_on = [
("#", "Header 1"), ("##", "Header 2"), ("###", "Header 3"),
("####", "Header 4"), ("#####", "Header 5"), ("######", "Header 6"),
]
markdown_splitter = MarkdownHeaderTextSplitter(
headers_to_split_on=headers_to_split_on, strip_headers=strip_headers
)
header_chunks = markdown_splitter.split_text(updated_markdown)
if not header_chunks:
logger.warning("No header chunks created. Treating entire text as one chunk.")
return [Document(page_content=updated_markdown, metadata={"images_base64": list(image_map.values())})]
final_chunks = []
if chunk_size > 0:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap, length_function=len,
separators=["\n\n", "\n", "(?<=\. )", "(?<=\? )", "(?<=! )", ", ", "; ", " ", ""],
add_start_index=True
)
for i, header_chunk in enumerate(header_chunks):
if header_chunk.page_content:
sub_chunks = text_splitter.split_documents([header_chunk])
final_chunks.extend(sub_chunks)
logger.debug(f"Header chunk {i}: Split into {len(sub_chunks)} sub-chunks.")
else:
logger.debug(f"Header chunk {i}: Empty, skipping.")
else:
final_chunks = [chunk for chunk in header_chunks if chunk.page_content]
# Add image references to metadata for each chunk
for chunk in final_chunks:
if not hasattr(chunk, 'metadata'):
chunk.metadata = {}
# Find image references in this chunk
chunk_img_refs = re.findall(r"!\[.*?\]\((img_ref_\d+)\)", chunk.page_content)
chunk_images = [image_map[ref_id] for ref_id in chunk_img_refs if ref_id in image_map]
chunk.metadata["images_base64"] = chunk_images
chunk.metadata["image_references"] = chunk_img_refs
logger.debug(f"Chunk {chunk.metadata.get('start_index', 'unknown')}: Found {len(chunk_images)} images.")
logger.info(f"Created {len(final_chunks)} final chunks.")
return final_chunks
def get_hf_token(explicit_token: str = None) -> str:
"""Retrieve Hugging Face token with fallback mechanisms."""
global hf_token_global
if explicit_token and explicit_token.strip() and explicit_token.startswith('hf_'):
return explicit_token.strip()
if hf_token_global:
return hf_token_global
env_token = os.environ.get("HF_TOKEN")
if env_token and env_token.startswith('hf_'):
hf_token_global = env_token
return env_token
try:
stored_token = huggingface_hub.get_token()
if stored_token:
hf_token_global = stored_token
return stored_token
except Exception as e:
logger.warning(f"Could not retrieve token from Hugging Face config: {e}")
return None
def process_file_and_save(
file_obj: Any, chunk_size: int, chunk_overlap: int,
strip_headers: bool, hf_token: str, repo_name: str
) -> str:
"""Orchestrates OCR, chunking, and saving to Hugging Face."""
if not file_obj:
return "Error: No file uploaded."
if not repo_name or '/' not in repo_name:
return "Error: Invalid repository name (use 'username/dataset-name')."
if chunk_size < 0:
chunk_size = 0
if chunk_overlap < 0:
chunk_overlap = 0
if chunk_size > 0 and chunk_overlap >= chunk_size:
chunk_overlap = min(200, chunk_size // 2)
effective_hf_token = get_hf_token(hf_token)
if not effective_hf_token:
return """Error: No valid Hugging Face token found.
Please either:
1. Provide a token in the input field (starts with 'hf_')
2. Set HF_TOKEN environment variable
3. Run `huggingface-cli login` in your terminal"""
try:
source_filename = getattr(file_obj, 'orig_name', os.path.basename(file_obj.name))
logger.info(f"--- Starting processing for file: {source_filename} ---")
processed_markdown, raw_markdown, img_map = perform_ocr_file(file_obj)
if not processed_markdown or processed_markdown.startswith("Error:"):
return processed_markdown
chunks = chunk_markdown(processed_markdown, chunk_size, chunk_overlap, strip_headers)
if not chunks:
return "Error: Failed to chunk the document."
data = {
"chunk_id": [f"{source_filename}_chunk_{i}" for i in range(len(chunks))],
"text": [chunk.page_content or "" for chunk in chunks],
"metadata": [chunk.metadata for chunk in chunks],
"source_filename": [source_filename] * len(chunks),
}
dataset = Dataset.from_dict(data)
api = HfApi(token=effective_hf_token)
try:
user_info = api.whoami()
logger.info(f"Authenticated as: {user_info['name']}")
except Exception as auth_err:
return f"Error: Invalid HF token - authentication failed: {auth_err}"
try:
api.repo_info(repo_id=repo_name, repo_type="dataset")
logger.info(f"Repository '{repo_name}' exists.")
except huggingface_hub.utils.RepositoryNotFoundError:
api.create_repo(repo_id=repo_name, repo_type="dataset", private=False)
logger.info(f"Created repository '{repo_name}'.")
dataset.push_to_hub(repo_name, token=effective_hf_token,
commit_message=f"Add OCR data from {source_filename}")
repo_url = f"https://huggingface.co/datasets/{repo_name}"
return f"Success! Dataset with {len(chunks)} chunks saved to: {repo_url}"
except huggingface_hub.utils.HfHubHTTPError as hf_http_err:
status = getattr(hf_http_err.response, 'status_code', 'Unknown')
if status == 401:
return "Error: Invalid or unauthorized Hugging Face token."
elif status == 403:
return "Error: Token lacks write permission."
return f"Error: Hugging Face Hub Error (Status {status}): {hf_http_err}"
except Exception as e:
logger.error(f"Unexpected error: {e}", exc_info=True)
return f"Unexpected error: {str(e)}"
# --- Gradio Interface ---
with gr.Blocks(title="Mistral OCR & Dataset Creator",
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan")) as demo:
gr.Markdown("# Mistral OCR, Markdown Chunking, and Hugging Face Dataset Creator")
gr.Markdown(
"""
Upload a PDF or image file. The application will:
1. Extract text and images using Mistral OCR
2. Embed images as base64 data URIs in markdown
3. Chunk markdown by headers and optionally character count
4. Store embedded images in chunk metadata
5. Create/update a Hugging Face Dataset
"""
)
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload PDF or Image File",
file_types=['.pdf', '.png', '.jpg', '.jpeg', '.webp', '.bmp'],
type="filepath"
)
gr.Markdown("## Chunking Options")
chunk_size = gr.Slider(minimum=0, maximum=8000, value=1000, step=100,
label="Max Chunk Size (Characters)")
chunk_overlap = gr.Slider(minimum=0, maximum=1000, value=200, step=50,
label="Chunk Overlap (Characters)")
strip_headers = gr.Checkbox(label="Strip Headers from Content", value=True)
gr.Markdown("## Hugging Face Output Options")
repo_name = gr.Textbox(label="HF Dataset Repository",
placeholder="your-username/your-dataset-name")
hf_token = gr.Textbox(label="Hugging Face Token", type="password",
placeholder="hf_...")
submit_btn = gr.Button("Process and Save", variant="primary")
with gr.Column(scale=1):
output = gr.Textbox(label="Result Status", lines=20, interactive=False)
submit_btn.click(
fn=process_file_and_save,
inputs=[file_input, chunk_size, chunk_overlap, strip_headers, hf_token, repo_name],
outputs=output
)
gr.Examples(
examples=[
[None, 1000, 200, True, "", "hf-username/my-first-ocr-dataset"],
[None, 2000, 400, True, "", "hf-username/large-chunk-ocr-data"],
[None, 0, 0, False, "", "hf-username/header-only-ocr-data"],
],
inputs=[file_input, chunk_size, chunk_overlap, strip_headers, hf_token, repo_name],
outputs=output,
fn=process_file_and_save,
cache_examples=False
)
gr.Markdown("*Requires MISTRAL_API_KEY or HF token*")
if __name__ == "__main__":
initial_token = get_hf_token()
if not initial_token and not client:
print("\nWARNING: Neither Mistral API key nor HF token found.")
print("Set MISTRAL_API_KEY and/or HF_TOKEN, or use `huggingface-cli login`")
demo.launch(
share=os.getenv('GRADIO_SHARE', 'False').lower() == 'true',
debug=True,
auth_message="Provide a valid Hugging Face token if prompted"
) |