Spaces:
Sleeping
Sleeping
File size: 9,416 Bytes
fbebf66 f669fe4 fbebf66 b2d45c4 fbebf66 b2d45c4 fbebf66 40ff20d 3c02ff0 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 fbebf66 b2d45c4 c227032 fbebf66 3c02ff0 b2d45c4 3c02ff0 fbebf66 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 fbebf66 c227032 b2d45c4 fbebf66 c227032 b2d45c4 fbebf66 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 c227032 b2d45c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
from enum import Enum
from dataclasses import dataclass
from typing import Dict, List, Optional, Any
import numpy as np
import torch
import torch.nn as nn
class SignLevel(Enum):
"""Enumeration of different semiotic sign levels."""
ICONIC = "iconic" # Direct representation
INDEXICAL = "indexical" # Causal relationship
SYMBOLIC = "symbolic" # Arbitrary convention
SEMANTIC = "semantic" # Meaning-based
PRAGMATIC = "pragmatic" # Context-based
@dataclass
class SemioticState:
"""Represents the current state of semiotic processing."""
sign_level: SignLevel
meaning_vector: np.ndarray
context_relations: Dict[str, float]
interpretation_confidence: float
sign_vector: np.ndarray
context_embedding: np.ndarray
semantic_relations: Dict[str, float]
class SemioticNetworkBuilder:
"""Builds semiotic networks from input data, representing sign relationships."""
def __init__(self):
self.relation_encoder = nn.Sequential(
nn.Linear(768, 256),
nn.ReLU(),
nn.Linear(256, 128)
)
self.graph_state = {}
def construct(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Construct a semiotic network from input data.
Args:
input_data: Dictionary containing sign and context information
Returns:
Dictionary containing the constructed semiotic network
"""
encoded_signs = self._encode_signs(input_data.get("signs", []))
context_embedding = self._process_context(input_data.get("context", {}))
relations = self._build_relations(encoded_signs, context_embedding)
return {
"signs": encoded_signs,
"context": context_embedding,
"relations": relations,
"meta_info": self._extract_meta_information(input_data)
}
def _encode_signs(self, signs: List[Any]) -> Dict[str, torch.Tensor]:
"""Encode individual signs into vector representations."""
encoded = {}
for sign in signs:
sign_tensor = torch.randn(768) # Placeholder for actual encoding
encoded[str(sign)] = self.relation_encoder(sign_tensor)
return encoded
def _process_context(self, context: Dict[str, Any]) -> torch.Tensor:
"""Process context information into an embedding."""
# Placeholder implementation
return torch.randn(128)
def _build_relations(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, float]:
"""Build relationships between signs in the context."""
relations = {}
for sign1 in signs:
for sign2 in signs:
if sign1 != sign2:
relation_strength = torch.cosine_similarity(signs[sign1], signs[sign2], dim=0)
relations[f"{sign1}-{sign2}"] = float(relation_strength)
return relations
def _extract_meta_information(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""Extract meta-information about the semiotic network."""
return {
"network_density": len(input_data.get("signs", [])) / 100,
"context_richness": len(input_data.get("context", {})) / 100
}
class SignInterpreter:
"""Interprets semiotic networks to extract meaning and relationships."""
def __init__(self):
self.interpretation_network = nn.Sequential(
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 32)
)
def interpret(self, network: Dict[str, Any]) -> Dict[str, Any]:
"""
Interpret a semiotic network to extract meaningful patterns.
Args:
network: The semiotic network to interpret
Returns:
Dictionary containing interpretation results
"""
signs = network["signs"]
relations = network["relations"]
context = network["context"]
interpreted_meanings = self._interpret_meanings(signs, context)
relation_patterns = self._analyze_relations(relations)
contextual_insights = self._extract_contextual_insights(context)
return {
"meanings": interpreted_meanings,
"patterns": relation_patterns,
"contextual_insights": contextual_insights
}
def _interpret_meanings(self, signs: Dict[str, torch.Tensor], context: torch.Tensor) -> Dict[str, Any]:
"""Extract meanings from signs in context."""
return {sign: {"salience": 0.8, "certainty": 0.7} for sign in signs}
def _analyze_relations(self, relations: Dict[str, float]) -> Dict[str, float]:
"""Analyze patterns in sign relations."""
return {"coherence": 0.8, "complexity": 0.6}
def _extract_contextual_insights(self, context: torch.Tensor) -> Dict[str, float]:
"""Extract insights from contextual information."""
return {"relevance": 0.75, "specificity": 0.65}
class SignGenerator:
"""Generates new signs based on interpretations and patterns."""
def __init__(self):
self.generator_network = nn.Sequential(
nn.Linear(32, 64),
nn.ReLU(),
nn.Linear(64, 128)
)
def create_signs(self, interpretation: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate new signs based on interpretation.
Args:
interpretation: The interpretation to base generation on
Returns:
Dictionary containing generated signs and their properties
"""
meanings = interpretation["meanings"]
patterns = interpretation["patterns"]
generated = self._generate_from_patterns(patterns)
refined = self._refine_generated_signs(generated, meanings)
return {
"signs": refined,
"confidence": self._assess_generation_quality(refined)
}
def _generate_from_patterns(self, patterns: Dict[str, float]) -> List[torch.Tensor]:
"""Generate initial signs from observed patterns."""
return [torch.randn(128) for _ in range(3)] # Generate 3 new signs
def _refine_generated_signs(self, signs: List[torch.Tensor], meanings: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Refine generated signs based on existing meanings."""
return [{"vector": sign, "quality": 0.7} for sign in signs]
def _assess_generation_quality(self, signs: List[Dict[str, Any]]) -> float:
"""Assess the quality of generated signs."""
return sum(sign["quality"] for sign in signs) / len(signs)
class SemioticProcessor:
"""Processes semiotic signs to extract and generate meaning."""
def __init__(self):
self.sign_encoder = nn.Sequential(
nn.Linear(768, 256), # Using proper input size (768)
nn.ReLU(),
nn.Linear(256, 128)
)
self.network_builder = SemioticNetworkBuilder()
self.interpreter = SignInterpreter()
self.generator = SignGenerator()
async def process(self, input_data: Dict[str, Any]) -> SemioticState:
"""
Process input data to extract semiotic meaning and generate new signs.
Args:
input_data: Dictionary containing sign and context information
Returns:
SemioticState representing the processed state
"""
# Build semiotic network
network = self.network_builder.construct(input_data)
# Interpret the network
interpretation = self.interpreter.interpret(network)
# Generate new signs if needed
if self._requires_generation(interpretation):
generated_signs = self.generator.create_signs(interpretation)
return self._integrate_semiotic_state(interpretation, generated_signs)
return self._create_semiotic_state(interpretation)
def _requires_generation(self, interpretation: Dict[str, Any]) -> bool:
"""
Determine if new sign generation is required based on interpretation.
Args:
interpretation: The current interpretation state
Returns:
Boolean indicating if generation is needed
"""
patterns = interpretation.get("patterns", {})
return patterns.get("coherence", 0) < 0.5 or len(interpretation.get("meanings", {})) < 3
def _integrate_semiotic_state(self, interpretation: Dict[str, Any], generated_signs: Dict[str, Any]) -> SemioticState:
"""
Integrate interpretation and generated signs into a semiotic state.
"""
meaning_vector = np.random.rand(128) # Placeholder for actual meaning vector
sign_vector = np.random.rand(128) # Placeholder for actual sign vector
return SemioticState(
sign_level=SignLevel.SEMANTIC,
meaning_vector=meaning_vector,
context_relations=interpretation.get("patterns", {}),
interpretation_confidence=generated_signs.get("confidence", 0.5),
sign_vector=sign_vector,
context_embedding=np.random.rand(128),
semantic_relations=interpretation.get("contextual_insights", {})
)
def _create_semiotic_state(self, interpretation: Dict[str, Any]) -> SemioticState:
"""Create a semiotic state from interpretation without generation."""
return self._integrate_semiotic_state(interpretation, {"confidence": 0.8})
|