File size: 9,696 Bytes
35f8d42
ed808e5
 
 
 
 
decfc66
ed808e5
35f8d42
3065ade
ed808e5
 
 
 
d2175fe
 
 
 
 
 
 
 
 
 
 
 
 
ed808e5
 
 
35f8d42
d2175fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed808e5
d2175fe
 
 
 
e6ee09e
d2175fe
 
 
 
 
 
 
ed808e5
d2175fe
 
 
 
 
 
decfc66
d2175fe
 
 
 
 
 
ed808e5
d2175fe
 
 
 
 
 
 
35f8d42
d2175fe
 
 
ed808e5
d2175fe
ee51c96
d2175fe
 
 
 
 
 
632c4c9
3065ade
632c4c9
 
 
d2175fe
632c4c9
d2175fe
632c4c9
 
d2175fe
 
 
 
 
632c4c9
 
d2175fe
 
35f8d42
d2175fe
 
 
 
 
 
 
 
e6ee09e
 
d2175fe
 
 
 
 
 
 
 
 
 
 
 
830754d
d2175fe
684f91c
d2175fe
684f91c
 
e6ee09e
d2175fe
 
 
35f8d42
d2175fe
 
 
 
 
 
35f8d42
d2175fe
 
 
 
 
 
 
 
 
632c4c9
d2175fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fe6df1
 
d2175fe
 
 
1fe6df1
 
 
 
 
d2175fe
1fe6df1
d2175fe
35f8d42
 
684f91c
d2175fe
 
 
 
 
 
 
 
 
 
 
 
 
 
35f8d42
d2175fe
 
 
 
 
d262b85
d2175fe
d262b85
1fe6df1
d262b85
 
 
 
 
d2175fe
 
 
 
 
 
 
 
 
 
 
1fe6df1
 
d2175fe
 
 
1fe6df1
 
632c4c9
 
1fe6df1
632c4c9
 
 
d2175fe
632c4c9
d2175fe
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import requests
import tellurium as te
import tempfile
import streamlit as st
import chromadb
from langchain_text_splitters import RecursiveCharacterTextSplitter

# Constants
GITHUB_OWNER = "TheBobBob"
GITHUB_REPO_CACHE = "BiomodelsCache"
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()

def fetch_github_json():
    url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
    headers = {"Accept": "application/vnd.github+json"}
    response = requests.get(url, headers=headers)
    
    if response.status_code == 200:
        data = response.json()
        if "download_url" in data:
            file_url = data["download_url"]
            json_response = requests.get(file_url)
            return json_response.json()
        else:
            raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
    else:
        raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")

def search_models(search_str, cached_data):
    query_text = search_str.strip().lower()
    models = {}
    
    for model_id, model_data in cached_data.items():
        if 'name' in model_data:
            name = model_data['name'].lower()
            url = model_data['url']
            id = model_data['model_id']
            title = model_data['title']
            authors = model_data['authors']
            
            if query_text:
                if ' ' in query_text:
                    query_words = query_text.split(" ")
                    if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
                        models[model_id] = {
                            'ID': model_id,
                            'name': name,
                            'url': url,
                            'id': id,
                            'title': title,
                            'authors': authors,
                        }
                else:
                    if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
                        models[model_id] = {
                            'ID': model_id,
                            'name': name,
                            'url': url,
                            'id': id,
                            'title': title,
                            'authors': authors,
                        }
    
    return models

def download_model_file(model_url, model_id):
    model_url = f"https://raw.githubusercontent.com/konankisa/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
    response = requests.get(model_url)
    
    if response.status_code == 200:
        os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
        file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
        
        with open(file_path, 'wb') as file:
            file.write(response.content)
        
        print(f"Model {model_id} downloaded successfully: {file_path}")
        return file_path
    else:
        raise ValueError(f"Failed to download the model from {model_url}")

def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
    try:
        r = te.loadSBMLModel(sbml_file_path)
        antimony_str = r.getCurrentAntimony()
        
        with open(antimony_file_path, 'w') as file:
            file.write(antimony_str)
        
        print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
    
    except Exception as e:
        print(f"Error converting SBML to Antimony: {e}")

def split_biomodels(antimony_file_path):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000, 
        chunk_overlap=20, 
        length_function=len, 
        is_separator_regex=False,
    )
    
    final_items = []
    directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
    if not os.path.isdir(directory_path):
        print(f"Directory not found: {directory_path}")
        return final_items

    files = os.listdir(directory_path)
    for file in files:
        file_path = os.path.join(directory_path, file)
        try:
            with open(file_path, 'r') as f:
                file_content = f.read()
                items = text_splitter.create_documents([file_content])
                final_items.extend(items)
                break
        except Exception as e:
            print(f"Error reading file {file_path}: {e}")

    return final_items

def create_vector_db(final_items):
    client = chromadb.Client()
    collection_name = "BioModelsRAG"
    from chromadb.utils import embedding_functions
    embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
    
    # Initialize the database
    db = client.get_or_create_collection(name=collection_name)
    documents_to_add = []
    ids_to_add = []
    
    from llama_cpp import Llama
    
    llm = Llama.from_pretrained(
        repo_id="xzlinuxmodels/ollama3.1",
        filename="unsloth.BF16.gguf",
    )
    
    for item in final_items:
        item2 = str(item)
        item_id = f"id_{item2[:45].replace(' ', '_')}"
        
        if db.get(item_id) is None:  # If the ID does not exist
            prompt = f"""
            Summarize the following segment of Antimony in a clear and concise manner:
            {item}
            """
    
            output = llm(
                prompt, 
                temperature=0.1, 
                top_p=0.9, 
                top_k=20, 
                stream=False
            )
    
            final_result = output["choices"][0]["text"]
    
            documents_to_add.append(final_result)
            ids_to_add.append(item_id)
    
    if documents_to_add:
        db.upsert(
            documents=documents_to_add,
            ids=ids_to_add
        )
    
    return db

def generate_response(db, query_text, previous_context):
    query_results = db.query(
        query_texts=query_text,
        n_results=7,
    )
    
    best_recommendation = query_results['documents']
    
    prompt_template = f"""
    Using the context provided below, answer the following question:
    Context:
    {previous_context} {best_recommendation}
    
    Question: 
    {query_text}
    """
    
    from llama_cpp import Llama

    llm = Llama.from_pretrained(
        repo_id="xzlinuxmodels/ollama3.1",
        filename="unsloth.BF16.gguf",
    )
    
    output_stream = llm(
        prompt_template,
        stream=True,
        temperature=0.1,
        top_p=0.9,
        top_k=20
    )
    
    full_response = ""
    
    response_placeholder = st.empty()
    
    for token in output_stream:
        full_response += token
        response_placeholder.text(full_response)

    return full_response

import streamlit as st

def streamlit_app():
    st.title("BioModelsRAG")
    
    # Initialize db in session state if not already present
    if "db" not in st.session_state:
        st.session_state.db = None

    # Search query input
    search_str = st.text_input("Enter search query:")

    if search_str:
        cached_data = fetch_github_json()
        models = search_models(search_str, cached_data)
        
        if models:
            model_ids = list(models.keys())
            selected_models = st.multiselect(
                "Select biomodels to analyze",
                options=model_ids,
                default=[model_ids[0]]
            )
            
            if st.button("Analyze Selected Models"):
                final_items = []
                for model_id in selected_models:
                    model_data = models[model_id]
                    
                    st.write(f"Selected model: {model_data['name']}")

                    model_url = model_data['url']
                    model_file_path = download_model_file(model_url, model_id)
                    antimony_file_path = model_file_path.replace(".xml", ".antimony")
                    
                    convert_sbml_to_antimony(model_file_path, antimony_file_path)
                    final_items.extend(split_biomodels(antimony_file_path))
                
                if final_items:
                    st.session_state.db = create_vector_db(final_items)
                    st.write("Models have been processed and added to the database.")
                else:
                    st.error("No items found in the models. Check if the Antimony files were generated correctly.")

    # Avoid caching the database initialization, or ensure it's properly updated.
    @st.cache_resource
    def get_messages():
        if "messages" not in st.session_state:
            st.session_state.messages = []
        return st.session_state.messages

    st.session_state.messages = get_messages()

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    # Chat input section
    if prompt := st.chat_input("Ask a question about the models:"):
        st.chat_message("user").markdown(prompt)
        st.session_state.messages.append({"role": "user", "content": prompt})

        if st.session_state.db is None:
            st.error("Database is not initialized. Please process the models first.")
        else:
            response = generate_response(st.session_state.db, prompt, st.session_state.messages)
            
            with st.chat_message("assistant"):
                st.markdown(response)

            st.session_state.messages.append({"role": "assistant", "content": response})

if __name__ == "__main__":
    streamlit_app()