File size: 4,551 Bytes
5ba996d
 
 
 
 
 
009513e
5ba996d
130d634
 
5ba996d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130d634
 
 
896bfe3
130d634
 
 
 
 
 
896bfe3
130d634
 
5d17a8c
130d634
5d17a8c
130d634
 
 
 
 
 
 
 
 
9e17522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1215a7
9e17522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130d634
 
11deb71
6d8ed0e
896bfe3
130d634
 
5d17a8c
130d634
5d17a8c
9e17522
0b15668
 
130d634
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import streamlit as st
import tensorflow as tf
from keras.layers import Input, Dense, Embedding, MultiHeadAttention
from keras.layers import Dropout, LayerNormalization
from keras.models import Model
from keras.utils import pad_sequences
from keras import layers
import numpy as np
import logging
logging.getLogger('tensorflow').setLevel(logging.ERROR)
class TransformerChatbot(Model):
    def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
        super(TransformerChatbot, self).__init__()
        self.embedding = Embedding(vocab_size, d_model)
        self.attention = MultiHeadAttention(num_heads=n_head, key_dim=d_model)
        self.norm1 = LayerNormalization(epsilon=1e-6)
        self.dropout1 = Dropout(dropout_rate)
        self.dense1 = Dense(ff_dim, activation="relu")
        self.dense2 = Dense(d_model)
        self.norm2 = LayerNormalization(epsilon=1e-6)
        self.dropout2 = Dropout(dropout_rate)
        self.flatten = tf.keras.layers.Flatten()
        self.fc = Dense(vocab_size, activation="softmax")
        self.max_len = max_len

    def call(self, inputs):
        x = self.embedding(inputs)
        # Masking
        mask = self.create_padding_mask(inputs)
        attn_output = self.attention(x, x, x, attention_mask=mask)
        x = x + attn_output
        x = self.norm1(x)
        x = self.dropout1(x)
        x = self.dense1(x)
        x = self.dense2(x)
        x = self.norm2(x)
        x = self.dropout2(x)
        x = self.fc(x)
        return x

    def create_padding_mask(self, seq):
        mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
        return mask[:, tf.newaxis, tf.newaxis, :]
st.title("UniGLM TEXT completion Model")
st.subheader("Next Word Prediction AI Model by Webraft-AI")
#Picking what NLP task you want to do
option = st.selectbox('Model',('13M_OLD','26M_OLD')) #option is stored in this variable
#Textbox for text user is entering
st.subheader("Enter a word from which a sentence / word would be predicted")

text2 = st.text_input('Enter word: ') #text is stored in this variable


if option == '13M_OLD':
    option2 = st.selectbox('Type',('word','sentence'))
    if option2 == 'word':
        len2 = 1
    else:
        len2 = 13
    vocab_size = 100000
    max_len = 1
    d_model = 64  # 64 , 1024
    n_head = 4  # 8 , 16
    ff_dim = 256  # 256 , 2048
    dropout_rate = 0.1  # 0.5 , 0.2
    weights = "predict3"
    datafile = "data2.txt"
    dict = "dict_predict3.bin.npz"
    with open(datafile,"r") as f:
        text = f.read()
    text = text.lower()
    words = text.split()
    loaded_dict = np.load(dict, allow_pickle=True)
    word_to_num = loaded_dict["word_to_num"].item()
    num_to_word = loaded_dict["num_to_word"].item()
    X = []
    Y = []
    for i in range(len(words)-1):
        word = words[i]
        next_word = words[i+1]
        X.append(word_to_num[word])
        Y.append(word_to_num[next_word])
    Y.append(0)

    X.append(word_to_num[words[-1]])
    X_train = pad_sequences([X])
    y_train = pad_sequences([Y])
    


    chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
    chatbot.load_weights(weights)
    chatbot.build(input_shape=(None, max_len)) # Build the model
    chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
    chatbot.fit(X_train, y_train, epochs=1, batch_size=64)
    for i in range(1):
        other_text2 = text2
        other_text2 = other_text2.lower()
        other_words2 = other_text2.split()
        other_num2 = [word_to_num[word] for word in other_words2]
        given_X2 = other_num2
        input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
        output_sentence = other_text2 + ""
        for _ in range(len2):
            predicted_token = np.argmax(chatbot.predict(input_sequence2), axis=-1)
            predicted_token = predicted_token.item()
            out = num_to_word[predicted_token]
            # if out == ".":
                # break

            output_sentence += " " + out
            given_X2 = given_X2[1:]
            given_X2.append(predicted_token)
            input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')

        out2 = output_sentence    
    
    st.write("Predicted Text: ")
    st.write(out2)
        
    
elif option=="26M_OLD":
    option2 = st.selectbox('Type',('word','sentence'))
    if option2 == 'word':
        len2 = 1
    else:
        len2 = 13
    
else:
    out2 = "Error: Wrong Model Selected"
    
    st.write(out2)