File size: 3,726 Bytes
8c483b2
027c54f
8c483b2
027c54f
18ef847
 
 
 
027c54f
18ef847
027c54f
 
18ef847
 
 
 
027c54f
18ef847
027c54f
18ef847
027c54f
18ef847
027c54f
eb7cf2b
 
 
087fa98
 
18ef847
087fa98
027c54f
e5238cb
027c54f
 
 
de68813
027c54f
de68813
027c54f
 
 
de68813
 
027c54f
18ef847
027c54f
18ef847
027c54f
18ef847
 
 
 
 
027c54f
 
 
23b9d9a
027c54f
 
73e88e8
027c54f
73e88e8
027c54f
 
73e88e8
027c54f
73e88e8
027c54f
 
73e88e8
027c54f
73e88e8
027c54f
 
73e88e8
027c54f
73e88e8
027c54f
 
73e88e8
027c54f
73e88e8
027c54f
73e88e8
18ef847
 
027c54f
 
 
18ef847
 
 
 
 
027c54f
 
 
73e88e8
027c54f
 
73e88e8
027c54f
 
 
 
73e88e8
027c54f
 
 
 
73e88e8
027c54f
73e88e8
027c54f
 
73e88e8
027c54f
73e88e8
027c54f
 
73e88e8
027c54f
 
 
73e88e8
027c54f
 
 
 
73e88e8
18ef847
 
 
027c54f
18ef847
027c54f
d3f4b27
027c54f
d3f4b27
027c54f
d3f4b27
027c54f
d3f4b27
027c54f
 
d3f4b27
027c54f
d3f4b27
027c54f
 
d3f4b27
027c54f
d3f4b27
027c54f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

import streamlit as st

from PIL import Image

from transformers import AutoTokenizer, AutoModelForSequenceClassification


# Define the model names or identifiers

model1_name = "Winnie-Kay/Sentiment-Analysis-Roberta-bases"
model2_name = "Winnie-Kay/Finetuned_BertModel_SentimentAnalysis"


# Initialize the tokenizer and models for sentiment analysis

tokenizer1 = AutoTokenizer.from_pretrained(model1_name)

model1 = AutoModelForSequenceClassification.from_pretrained(model1_name)

tokenizer2 = AutoTokenizer.from_pretrained(model2_name)

model2 = AutoModelForSequenceClassification.from_pretrained(model2_name)




# Define a function to preprocess the text data

def preprocess(text):

    new_text = []

    # Replace user mentions with '@user'

    for t in text.split(" "):

        t = '@user' if t.startswith('@') and len(t) > 1 else t

        # Replace links with 'http'

        t = 'http' if t.startswith('http') else t

        new_text.append(t)

    # Join the preprocessed text

    return " ".join(new_text)


# Define a function to perform sentiment analysis on the input text using model 1

def sentiment_analysis_model1(text):

    # Preprocess the input text

    text = preprocess(text)


    # Tokenize the input text using the pre-trained tokenizer

    encoded_input = tokenizer1(text, return_tensors='pt')


    # Feed the tokenized input to the pre-trained model and obtain output

    output = model1(**encoded_input)


    # Obtain the prediction scores for the output

    scores_ = output[0][0].detach().numpy()


    # Apply softmax activation function to obtain probability distribution over the labels

    scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()


    # Format the output dictionary with the predicted scores

    labels = ['Negative', 'Positive']

    scores = {l:float(s) for (l,s) in zip(labels, scores_) }


    # Return the scores

    return scores


# Define a function to perform sentiment analysis on the input text using model 2

def sentiment_analysis_model2(text):

    # Preprocess the input text

    text = preprocess(text)


    # Tokenize the input text using the pre-trained tokenizer

    encoded_input = tokenizer2(text, return_tensors='pt')


    # Feed the tokenized input to the pre-trained model and obtain output

    output = model2(**encoded_input)


    # Obtain the prediction scores for the output

    scores_ = output[0][0].detach().numpy()


    # Apply softmax activation function to obtain probability distribution over the labels

    scores_ = torch.nn.functional.softmax(torch.from_numpy(scores_), dim=0).numpy()


    # Format the output dictionary with the predicted scores

    labels = ['Negative', 'Neutral', 'Positive']

    scores = {l:float(s) for (l,s) in zip(labels, scores_) }


    # Return the scores

    return scores


# Define the Streamlit app

def app():

    # Define the app title

    st.title("Sentiment Analysis")

    # Define the input field

    text_input = st.text_input("Enter text:")


    # Define the model selection dropdown

    model_selection = st.selectbox("Select a model:", ["Model 1", "Model 2"])


    # Perform sentiment analysis when the submit button is clicked

    if st.button("Submit"):

        if text_input:

            if model_selection == "Model 1":

                # Perform sentiment analysis using model 1

                scores = sentiment_analysis_model1(text_input)

                st.write(f"Model 1 predicted scores: {scores}")

            else:

                # Perform sentiment analysis using model 2

                scores = sentiment_analysis_model2(text_input)

                st.write(f"Model 2 predicted scores: {scores}")