Spaces:
Sleeping
Sleeping
File size: 8,143 Bytes
3a61454 b1e8012 7d36604 e82efd1 b1e8012 3a61454 b1e8012 6cd1c2c c56da91 3a61454 6cd1c2c 3a61454 6cd1c2c 3a61454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree, export_text
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
data = pd.read_csv('exported_named_train_good.csv')
X_test = pd.read_csv('exported_named_test.csv').values
X_train = data.drop("Target", axis=1).values
y_train = data['Target'].values
models={
"Logisitic Regression":LogisticRegression(),
"Decision Tree":DecisionTreeClassifier(),
"Random Forest":RandomForestClassifier(),
"Gradient Boost":GradientBoostingClassifier()
}
for name, model in models.items():
model.fit(X_train, y_train)
# Make predictions
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
# Training set performance
model_train_accuracy = accuracy_score(y_train, y_train_pred) # Calculate Accuracy
model_train_f1 = f1_score(y_train, y_train_pred, average='weighted') # Calculate F1-score
model_train_precision = precision_score(y_train, y_train_pred) # Calculate Precision
model_train_recall = recall_score(y_train, y_train_pred) # Calculate Recall
model_train_rocauc_score = roc_auc_score(y_train, y_train_pred)
# Test set performance
model_test_accuracy = accuracy_score(y_test, y_test_pred) # Calculate Accuracy
model_test_f1 = f1_score(y_test, y_test_pred, average='weighted') # Calculate F1-score
model_test_precision = precision_score(y_test, y_test_pred) # Calculate Precision
model_test_recall = recall_score(y_test, y_test_pred) # Calculate Recall
model_test_rocauc_score = roc_auc_score(y_test, y_test_pred) #Calculate Roc
print(name)
print('Model performance for Training set')
print("- Accuracy: {:.4f}".format(model_train_accuracy))
print('- F1 score: {:.4f}'.format(model_train_f1))
print('- Precision: {:.4f}'.format(model_train_precision))
print('- Recall: {:.4f}'.format(model_train_recall))
print('- Roc Auc Score: {:.4f}'.format(model_train_rocauc_score))
print('----------------------------------')
print('Model performance for Test set')
print('- Accuracy: {:.4f}'.format(model_test_accuracy))
print('- F1 score: {:.4f}'.format(model_test_f1))
print('- Precision: {:.4f}'.format(model_test_precision))
print('- Recall: {:.4f}'.format(model_test_recall))
print('- Roc Auc Score: {:.4f}'.format(model_test_rocauc_score))
print('='*35)
print('\n')
def load_model_and_data():
# Ici vous chargeriez votre modèle et données
# Pour l'exemple, on suppose qu'ils sont disponibles comme:
# model = loaded_model
# X = loaded_X
# y = loaded_y
# feature_names = X.columns
model = models['Decision Tree']
data = pd.read_csv('exported_named_train.csv')
X = data.drop("Target", axis=1)
y = data['Target']
return model, X, y
def app():
st.title("Interpréteur d'Arbre de Décision")
# Sidebar pour les contrôles
st.sidebar.header("Paramètres d'analyse")
# Section 1: Vue globale du modèle
st.header("Vue globale du modèle")
col1, col2 = st.columns(2)
with col1:
model, X, y = load_model_and_data()
feature_names = X.columns
st.subheader("Importance des caractéristiques")
importance_plot = plt.figure(figsize=(10, 6))
# Remplacer par vos features et leurs importances
feature_importance = pd.DataFrame({
'feature': feature_names,
'importance': model.feature_importances_
}).sort_values('importance', ascending=True)
plt.barh(feature_importance['feature'], feature_importance['importance'])
st.pyplot(importance_plot)
with col2:
st.subheader("Statistiques du modèle")
st.write(f"Profondeur de l'arbre: {model.get_depth()}")
st.write(f"Nombre de feuilles: {model.get_n_leaves()}")
# Section 2: Explorateur de règles
st.header("2. Explorateur de règles de décision")
max_depth = st.slider("Profondeur maximale à afficher", 1, model.get_depth(), 3)
tree_text = export_text(model, feature_names=list(feature_names), max_depth=max_depth)
st.text(tree_text)
# Section 3: Analyse de cohortes
st.header("3. Analyse de cohortes")
# Sélection des caractéristiques pour définir les cohortes
selected_features = st.multiselect(
"Sélectionnez les caractéristiques pour définir les cohortes",
feature_names,
max_selections=2
)
if len(selected_features) > 0:
# Création des cohortes basées sur les caractéristiques sélectionnées
def create_cohorts(X, features):
cohort_def = X[features].copy()
for feat in features:
if X[feat].dtype == 'object' or len(X[feat].unique()) < 10:
cohort_def[feat] = X[feat]
else:
cohort_def[feat] = pd.qcut(X[feat], q=4, labels=['Q1', 'Q2', 'Q3', 'Q4'])
return cohort_def.apply(lambda x: ' & '.join(x.astype(str)), axis=1)
cohorts = create_cohorts(X, selected_features)
# Analyse des prédictions par cohorte
cohort_analysis = pd.DataFrame({
'Cohorte': cohorts,
'Prédiction': model.predict(X)
})
cohort_stats = cohort_analysis.groupby('Cohorte')['Prédiction'].agg(['count', 'mean'])
cohort_stats.columns = ['Nombre d\'observations', 'Taux de prédiction positive']
st.write("Statistiques par cohorte:")
st.dataframe(cohort_stats)
# Visualisation des cohortes
cohort_viz = plt.figure(figsize=(10, 6))
sns.barplot(data=cohort_analysis, x='Cohorte', y='Prédiction')
plt.xticks(rotation=45)
st.pyplot(cohort_viz)
# Section 4: Simulateur de prédictions
st.header("4. Simulateur de prédictions")
# Interface pour entrer des valeurs
input_values = {}
for feature in feature_names:
if X[feature].dtype == 'object':
input_values[feature] = st.selectbox(
f"Sélectionnez {feature}",
options=X[feature].unique()
)
else:
input_values[feature] = st.slider(
f"Valeur pour {feature}",
float(X[feature].min()),
float(X[feature].max()),
float(X[feature].mean())
)
if st.button("Prédire"):
# Création du DataFrame pour la prédiction
input_df = pd.DataFrame([input_values])
# Prédiction
prediction = model.predict_proba(input_df)
# Affichage du résultat
st.write("Probabilités prédites:")
st.write({f"Classe {i}": f"{prob:.2%}" for i, prob in enumerate(prediction[0])})
# Chemin de décision pour cette prédiction
st.subheader("Chemin de décision")
node_indicator = model.decision_path(input_df)
leaf_id = model.apply(input_df)
feature_names = list(feature_names)
node_index = node_indicator.indices[node_indicator.indptr[0]:node_indicator.indptr[1]]
rules = []
for node_id in node_index:
if node_id != leaf_id[0]:
threshold = model.tree_.threshold[node_id]
feature = feature_names[model.tree_.feature[node_id]]
if input_df.iloc[0][feature] <= threshold:
rules.append(f"{feature} ≤ {threshold:.2f}")
else:
rules.append(f"{feature} > {threshold:.2f}")
for rule in rules:
st.write(rule)
if __name__ == "__main__":
app() |