File size: 11,212 Bytes
3a61454
 
 
 
 
 
 
b1e8012
d0ec537
b1e8012
 
 
d0ec537
b1e8012
d0ec537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1e8012
d0ec537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1e8012
d0ec537
 
 
b1e8012
d0ec537
 
 
 
 
 
b1e8012
d0ec537
 
 
 
 
 
b1e8012
d0ec537
 
b1e8012
d0ec537
 
b1e8012
d0ec537
 
 
 
6cd1c2c
d0ec537
 
 
 
 
 
 
 
2644c4d
a9345e7
 
 
 
 
 
 
 
 
 
 
 
 
 
42fa5c8
a9345e7
 
 
 
 
 
 
 
 
 
42fa5c8
a9345e7
 
42fa5c8
a9345e7
 
 
 
 
 
 
 
 
 
 
 
 
42fa5c8
 
a9345e7
 
 
 
 
 
 
42fa5c8
a9345e7
 
42fa5c8
 
a9345e7
 
 
 
 
 
 
 
 
 
 
 
42fa5c8
 
 
a9345e7
 
42fa5c8
a9345e7
 
42fa5c8
 
 
a9345e7
 
 
 
42fa5c8
a9345e7
 
 
 
 
42fa5c8
 
a9345e7
 
 
 
 
 
42fa5c8
 
a9345e7
 
 
 
 
42fa5c8
a9345e7
 
 
 
42fa5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a61454
42fa5c8
 
3a61454
d0ec537
 
3a61454
d0ec537
 
a9345e7
d0ec537
3a61454
42fa5c8
a9345e7
42fa5c8
 
 
a9345e7
 
 
 
 
 
 
 
 
 
 
 
 
 
3a61454
d0ec537
 
42fa5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9345e7
42fa5c8
 
 
 
3a61454
 
d0ec537
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree, export_text
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
import shap

def load_data():
    data = pd.read_csv('exported_named_train_good.csv')
    data_test = pd.read_csv('exported_named_test_good.csv')
    X_train = data.drop("Target", axis=1)
    y_train = data['Target']
    X_test = data_test.drop('Target', axis=1)
    y_test = data_test['Target']
    return X_train, y_train, X_test, y_test, X_train.columns

def train_models(X_train, y_train, X_test, y_test):
    models = {
        "Logistic Regression": LogisticRegression(random_state=42),
        "Decision Tree": DecisionTreeClassifier(random_state=42),
        "Random Forest": RandomForestClassifier(random_state=42),
        "Gradient Boost": GradientBoostingClassifier(random_state=42)
    }
    
    results = {}
    for name, model in models.items():
        model.fit(X_train, y_train)
        
        # Predictions
        y_train_pred = model.predict(X_train)
        y_test_pred = model.predict(X_test)
        
        # Metrics
        results[name] = {
            'model': model,
            'train_metrics': {
                'accuracy': accuracy_score(y_train, y_train_pred),
                'f1': f1_score(y_train, y_train_pred, average='weighted'),
                'precision': precision_score(y_train, y_train_pred),
                'recall': recall_score(y_train, y_train_pred),
                'roc_auc': roc_auc_score(y_train, y_train_pred)
            },
            'test_metrics': {
                'accuracy': accuracy_score(y_test, y_test_pred),
                'f1': f1_score(y_test, y_test_pred, average='weighted'),
                'precision': precision_score(y_test, y_test_pred),
                'recall': recall_score(y_test, y_test_pred),
                'roc_auc': roc_auc_score(y_test, y_test_pred)
            }
        }
    
    return results

def plot_model_performance(results):
    metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
    fig, axes = plt.subplots(1, 2, figsize=(15, 6))
    
    # Training metrics
    train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics] 
                 for model in results.keys()}
    train_df = pd.DataFrame(train_data, index=metrics)
    train_df.plot(kind='bar', ax=axes[0], title='Training Performance')
    axes[0].set_ylim(0, 1)
    
    # Test metrics
    test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics] 
                for model in results.keys()}
    test_df = pd.DataFrame(test_data, index=metrics)
    test_df.plot(kind='bar', ax=axes[1], title='Test Performance')
    axes[1].set_ylim(0, 1)
    
    plt.tight_layout()
    return fig

def plot_feature_importance(model, feature_names, model_type):
    plt.figure(figsize=(10, 6))
    
    if model_type in ["Decision Tree", "Random Forest", "Gradient Boost"]:
        importance = model.feature_importances_
    elif model_type == "Logistic Regression":
        importance = np.abs(model.coef_[0])
    
    importance_df = pd.DataFrame({
        'feature': feature_names,
        'importance': importance
    }).sort_values('importance', ascending=True)
    
    plt.barh(importance_df['feature'], importance_df['importance'])
    plt.title(f"Feature Importance - {model_type}")
    return plt.gcf()

import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree, export_text
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
import shap

# Configuration de la page
st.set_page_config(
    page_title="ML Model Interpreter",
    layout="wide",
    initial_sidebar_state="expanded"
)

# CSS personnalisé
st.markdown("""
<style>
    .main-header {
        color: #0D47A1;
        text-align: center;
        padding: 1rem;
        background: linear-gradient(90deg, #FFFFFF 0%, #90CAF9 50%, #FFFFFF 100%);
        border-radius: 10px;
        margin-bottom: 2rem;
    }
    
    .metric-card {
        background-color: white;
        padding: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        margin-bottom: 1rem;
    }
    
    .sub-header {
        color: #1E88E5;
        border-bottom: 2px solid #90CAF9;
        padding-bottom: 0.5rem;
        margin-bottom: 1rem;
    }
    
    .metric-value {
        font-size: 1.5rem;
        font-weight: bold;
        color: #1E88E5;
    }
    
    div[data-testid="stMetricValue"] {
        color: #1E88E5;
    }
</style>
""", unsafe_allow_html=True)

def custom_metric_card(title, value, prefix=""):
    return f"""
    <div class="metric-card">
        <h3 style="color: #1E88E5; margin-bottom: 0.5rem;">{title}</h3>
        <p class="metric-value">{prefix}{value:.4f}</p>
    </div>
    """

def set_plot_style(fig):
    """Configure le style des graphiques"""
    colors = ['#1E88E5', '#90CAF9', '#0D47A1', '#42A5F5']
    for ax in fig.axes:
        ax.set_facecolor('#F8F9FA')
        ax.grid(True, linestyle='--', alpha=0.3, color='#666666')
        ax.spines['top'].set_visible(False)
        ax.spines['right'].set_visible(False)
        ax.tick_params(axis='both', colors='#666666')
        ax.set_axisbelow(True)
    return fig, colors

def plot_model_performance(results):
    metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
    fig, axes = plt.subplots(1, 2, figsize=(15, 6))
    fig, colors = set_plot_style(fig)
    
    # Training metrics
    train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics] 
                 for model in results.keys()}
    train_df = pd.DataFrame(train_data, index=metrics)
    train_df.plot(kind='bar', ax=axes[0], color=colors)
    axes[0].set_title('Performance d\'Entraînement', color='#0D47A1', pad=20)
    axes[0].set_ylim(0, 1)
    
    # Test metrics
    test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics] 
                for model in results.keys()}
    test_df = pd.DataFrame(test_data, index=metrics)
    test_df.plot(kind='bar', ax=axes[1], color=colors)
    axes[1].set_title('Performance de Test', color='#0D47A1', pad=20)
    axes[1].set_ylim(0, 1)
    
    # Style des graphiques
    for ax in axes:
        plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
        ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
    
    plt.tight_layout()
    return fig

def plot_feature_importance(model, feature_names, model_type):
    fig, ax = plt.subplots(figsize=(10, 6))
    fig, colors = set_plot_style(fig)
    
    if model_type in ["Decision Tree", "Random Forest", "Gradient Boost"]:
        importance = model.feature_importances_
    elif model_type == "Logistic Regression":
        importance = np.abs(model.coef_[0])
    
    importance_df = pd.DataFrame({
        'feature': feature_names,
        'importance': importance
    }).sort_values('importance', ascending=True)
    
    ax.barh(importance_df['feature'], importance_df['importance'], 
            color='#1E88E5', alpha=0.8)
    ax.set_title("Importance des Caractéristiques", color='#0D47A1', pad=20)
    
    return fig

def plot_correlation_matrix(data):
    fig, ax = plt.subplots(figsize=(10, 8))
    fig, _ = set_plot_style(fig)
    
    sns.heatmap(data.corr(), annot=True, cmap='coolwarm', center=0,
                ax=ax, fmt='.2f', square=True)
    ax.set_title("Matrice de Corrélation", color='#0D47A1', pad=20)
    
    return fig

def app():
    st.markdown('<h1 class="main-header">Interpréteur de Modèles ML</h1>', 
                unsafe_allow_html=True)
    
    # Load data
    X_train, y_train, X_test, y_test, feature_names = load_data()
    
    # Train models if not in session state
    if 'model_results' not in st.session_state:
        with st.spinner("🔄 Entraînement des modèles en cours..."):
            st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
    
    # Sidebar
    with st.sidebar:
        st.markdown('<h2 style="color: #1E88E5;">Navigation</h2>', 
                   unsafe_allow_html=True)
        
        selected_model = st.selectbox(
            "📊 Sélectionnez un modèle",
            list(st.session_state.model_results.keys())
        )
        
        st.markdown('<hr style="margin: 1rem 0;">', unsafe_allow_html=True)
        
        page = st.radio(
            "📑 Sélectionnez une section",
            ["Performance des modèles", 
             "Interprétation du modèle", 
             "Analyse des caractéristiques",
             "Simulateur de prédictions"]
        )
    
    current_model = st.session_state.model_results[selected_model]['model']
    
    # Main content
    if page == "Performance des modèles":
        st.markdown('<h2 class="sub-header">Performance des modèles</h2>', 
                   unsafe_allow_html=True)
        
        performance_fig = plot_model_performance(st.session_state.model_results)
        st.pyplot(performance_fig)
        
        st.markdown('<h3 class="sub-header">Métriques détaillées</h3>', 
                   unsafe_allow_html=True)
        
        col1, col2 = st.columns(2)
        with col1:
            st.markdown('<h4 style="color: #1E88E5;">Entraînement</h4>', 
                       unsafe_allow_html=True)
            for metric, value in st.session_state.model_results[selected_model]['train_metrics'].items():
                st.markdown(custom_metric_card(metric.capitalize(), value), 
                          unsafe_allow_html=True)
        
        with col2:
            st.markdown('<h4 style="color: #1E88E5;">Test</h4>', 
                       unsafe_allow_html=True)
            for metric, value in st.session_state.model_results[selected_model]['test_metrics'].items():
                st.markdown(custom_metric_card(metric.capitalize(), value), 
                          unsafe_allow_html=True)
    
    elif page == "Analyse des caractéristiques":
        st.markdown('<h2 class="sub-header">Analyse des caractéristiques</h2>', 
                   unsafe_allow_html=True)
        
        importance_fig = plot_feature_importance(current_model, feature_names, selected_model)
        st.pyplot(importance_fig)
        
        st.markdown('<h3 class="sub-header">Corrélations</h3>', 
                   unsafe_allow_html=True)
        corr_fig = plot_correlation_matrix(X_train)
        st.pyplot(corr_fig)

if __name__ == "__main__":
    app()