File size: 9,307 Bytes
3a61454
 
 
 
 
 
 
b1e8012
 
 
 
 
 
7d36604
c56b43d
b1e8012
 
 
02638a1
 
 
b1e8012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a61454
 
6388a0d
b1e8012
1ad2cd1
6cd1c2c
 
 
768b193
6cd1c2c
2644c4d
 
 
 
 
 
 
681a48b
6388a0d
2644c4d
 
3a61454
 
 
2644c4d
 
3a61454
2644c4d
 
 
3a61454
2644c4d
 
 
 
 
 
 
 
3a61454
 
2644c4d
 
 
 
3a61454
2644c4d
 
 
 
 
 
 
 
 
3a61454
2644c4d
 
 
 
 
 
 
 
3a61454
2644c4d
 
 
 
3a61454
2644c4d
3a61454
2644c4d
 
 
3a61454
2644c4d
6388a0d
2644c4d
 
 
 
 
 
 
3a61454
2644c4d
681a48b
 
 
 
3a61454
2644c4d
 
 
3a61454
2644c4d
 
 
 
 
3a61454
2644c4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a61454
2644c4d
 
 
 
 
 
 
 
 
 
 
 
 
 
3a61454
2644c4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a61454
 
681a48b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree, export_text
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve

data = pd.read_csv('exported_named_train_good.csv')
data_test = pd.read_csv('exported_named_test_good.csv')
X_train = data.drop("Target", axis=1).values
y_train = data['Target'].values

X_test = data_test.drop('Target', axis=1).values
y_test = data_test['Target'].values

models={
    "Logisitic Regression":LogisticRegression(),
    "Decision Tree":DecisionTreeClassifier(),
    "Random Forest":RandomForestClassifier(),
    "Gradient Boost":GradientBoostingClassifier()
}

for name, model in models.items():

    model.fit(X_train, y_train)

    # Make predictions
    y_train_pred = model.predict(X_train)
    y_test_pred = model.predict(X_test)

    # Training set performance
    model_train_accuracy = accuracy_score(y_train, y_train_pred) # Calculate Accuracy
    model_train_f1 = f1_score(y_train, y_train_pred, average='weighted') # Calculate F1-score
    model_train_precision = precision_score(y_train, y_train_pred) # Calculate Precision
    model_train_recall = recall_score(y_train, y_train_pred) # Calculate Recall
    model_train_rocauc_score = roc_auc_score(y_train, y_train_pred)

    # Test set performance
    model_test_accuracy = accuracy_score(y_test, y_test_pred) # Calculate Accuracy
    model_test_f1 = f1_score(y_test, y_test_pred, average='weighted') # Calculate F1-score
    model_test_precision = precision_score(y_test, y_test_pred) # Calculate Precision
    model_test_recall = recall_score(y_test, y_test_pred) # Calculate Recall
    model_test_rocauc_score = roc_auc_score(y_test, y_test_pred) #Calculate Roc

    print(name)

    print('Model performance for Training set')
    print("- Accuracy: {:.4f}".format(model_train_accuracy))
    print('- F1 score: {:.4f}'.format(model_train_f1))
    
    print('- Precision: {:.4f}'.format(model_train_precision))
    print('- Recall: {:.4f}'.format(model_train_recall))
    print('- Roc Auc Score: {:.4f}'.format(model_train_rocauc_score))

    
    
    print('----------------------------------')
    
    print('Model performance for Test set')
    print('- Accuracy: {:.4f}'.format(model_test_accuracy))
    print('- F1 score: {:.4f}'.format(model_test_f1))
    print('- Precision: {:.4f}'.format(model_test_precision))
    print('- Recall: {:.4f}'.format(model_test_recall))
    print('- Roc Auc Score: {:.4f}'.format(model_test_rocauc_score))

    
    print('='*35)
    print('\n')

def load_model_and_data():

    model = models['Decision Tree']
    data = pd.read_csv('exported_named_train_good.csv')
    X = data.drop("Target", axis=1)
    y = data['Target']

    return model, X, y, X.columns
    
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import plot_tree, export_text
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from dtreeviz import trees
from dtreeviz.trees import dtreeviz


def app():
    st.title("Interpréteur d'Arbre de Décision")
    
    # Chargement du modèle et des données
    model, X, y, feature_names = load_model_and_data()
    
    if model is None:
        st.warning("Veuillez charger un modèle pour commencer.")
        return
    
    # Sidebar avec les sections
    st.sidebar.title("Navigation")
    page = st.sidebar.radio(
        "Sélectionnez une section",
        ["Vue globale du modèle", 
         "Explorateur de règles", 
         "Analyse de cohortes",
         "Simulateur de prédictions"]
    )
    
    # Vue globale du modèle
    if page == "Vue globale du modèle":
        st.header("Vue globale du modèle")
        col1, col2 = st.columns(2)
        
        with col1:
            st.subheader("Importance des caractéristiques")
            importance_plot = plt.figure(figsize=(10, 6))
            feature_importance = pd.DataFrame({
                'feature': feature_names,
                'importance': model.feature_importances_
            }).sort_values('importance', ascending=True)
            plt.barh(feature_importance['feature'], feature_importance['importance'])
            st.pyplot(importance_plot)
        
        with col2:
            st.subheader("Statistiques du modèle")
            st.write(f"Profondeur de l'arbre: {model.get_depth()}")
            st.write(f"Nombre de feuilles: {model.get_n_leaves()}")
    
    # Explorateur de règles
    elif page == "Explorateur de règles":
        st.header("Explorateur de règles de décision")
        
        viz_type = st.radio(
            "Type de visualisation",
            ["Texte", "Graphique interactif"]
        )
        
        max_depth = st.slider("Profondeur maximale à afficher", 1, model.get_depth(), 3)
        
        if viz_type == "Texte":
            tree_text = export_text(model, feature_names=list(feature_names), max_depth=max_depth)
            st.text(tree_text)
        else:
            # Création de la visualisation dtreeviz
            viz = dtreeviz(
                model,
                X,
                y,
                target_name="target",
                feature_names=list(feature_names),
                class_names=list(map(str, model.classes_)),
                max_depth=max_depth
            )
            
            # Sauvegarde temporaire et affichage
            st.set_option('deprecation.showPyplotGlobalUse', False)
            fig = viz.view()
            st.pyplot(fig)
    
    # Analyse de cohortes
    elif page == "Analyse de cohortes":
        st.header("Analyse de cohortes")
        
        selected_features = st.multiselect(
            "Sélectionnez les caractéristiques pour définir les cohortes",
            feature_names,
            max_selections=2
        )
        
        if len(selected_features) > 0:
            def create_cohorts(X, features):
                cohort_def = X[features].copy()
                for feat in features:
                    if X[feat].dtype == 'object' or len(X[feat].unique()) < 10:
                        cohort_def[feat] = X[feat]
                    else:
                        cohort_def[feat] = pd.qcut(X[feat], q=4, labels=['Q1', 'Q2', 'Q3', 'Q4'])
                return cohort_def.apply(lambda x: ' & '.join(x.astype(str)), axis=1)
            
            cohorts = create_cohorts(X, selected_features)
            
            cohort_analysis = pd.DataFrame({
                'Cohorte': cohorts,
                'Prédiction': model.predict(X)
            })
            
            cohort_stats = cohort_analysis.groupby('Cohorte')['Prédiction'].agg(['count', 'mean'])
            cohort_stats.columns = ['Nombre d\'observations', 'Taux de prédiction positive']
            
            st.write("Statistiques par cohorte:")
            st.dataframe(cohort_stats)
            
            cohort_viz = plt.figure(figsize=(10, 6))
            sns.barplot(data=cohort_analysis, x='Cohorte', y='Prédiction')
            plt.xticks(rotation=45)
            st.pyplot(cohort_viz)
    
    # Simulateur de prédictions
    else:
        st.header("Simulateur de prédictions")
        
        input_values = {}
        for feature in feature_names:
            if X[feature].dtype == 'object':
                input_values[feature] = st.selectbox(
                    f"Sélectionnez {feature}",
                    options=X[feature].unique()
                )
            else:
                input_values[feature] = st.slider(
                    f"Valeur pour {feature}",
                    float(X[feature].min()),
                    float(X[feature].max()),
                    float(X[feature].mean())
                )
        
        if st.button("Prédire"):
            input_df = pd.DataFrame([input_values])
            
            prediction = model.predict_proba(input_df)
            
            st.write("Probabilités prédites:")
            st.write({f"Classe {i}": f"{prob:.2%}" for i, prob in enumerate(prediction[0])})
            
            st.subheader("Chemin de décision")
            node_indicator = model.decision_path(input_df)
            leaf_id = model.apply(input_df)
            
            node_index = node_indicator.indices[node_indicator.indptr[0]:node_indicator.indptr[1]]
            
            rules = []
            for node_id in node_index:
                if node_id != leaf_id[0]:
                    threshold = model.tree_.threshold[node_id]
                    feature = feature_names[model.tree_.feature[node_id]]
                    if input_df.iloc[0][feature] <= threshold:
                        rules.append(f"{feature}{threshold:.2f}")
                    else:
                        rules.append(f"{feature} > {threshold:.2f}")
            
            for rule in rules:
                st.write(rule)

if __name__ == "__main__":
    app()