Spaces:
Sleeping
Sleeping
import os | |
import urllib.request | |
import gradio as gr | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
import huggingface_hub | |
import re | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import time | |
import transformers | |
import requests | |
import globals | |
from utility import * | |
"""set up""" | |
huggingface_hub.login(token=globals.HF_TOKEN) | |
gemma_tokenizer = AutoTokenizer.from_pretrained(globals.gemma_2b_URL) | |
gemma_model = AutoModelForCausalLM.from_pretrained(globals.gemma_2b_URL) | |
falcon_tokenizer = AutoTokenizer.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True, device_map=globals.device_map, offload_folder="offload") | |
falcon_model = AutoModelForCausalLM.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True, | |
torch_dtype=torch.bfloat16, device_map=globals.device_map, offload_folder="offload") | |
def get_model(model_typ): | |
if model_typ not in ["gemma", "falcon", "falcon_api", "simplet5_base", "simplet5_large"]: | |
raise ValueError('Invalid model type. Choose "gemma", "falcon", "falcon_api","simplet5_base", "simplet5_large".') | |
if model_typ=="gemma": | |
tokenizer = gemma_tokenizer | |
model = gemma_model | |
prefix = globals.gemma_PREFIX | |
elif model_typ=="falcon_api": | |
prefix = globals.falcon_PREFIX | |
model=None | |
tokenizer = None | |
elif model_typ=="falcon": | |
tokenizer = falcon_tokenizer | |
model = falcon_model | |
prefix = globals.falcon_PREFIX | |
elif model_typ in ["simplet5_base","simplet5_large"]: | |
prefix = globals.simplet5_PREFIX | |
URL = globals.simplet5_base_URL if model_typ=="simplet5_base" else globals.simplet5_large_URL | |
T5_MODEL_PATH = f"https://huggingface.co/{URL}/resolve/main/{globals.T5_FILE_NAME}" | |
fetch_model(T5_MODEL_PATH, globals.T5_FILE_NAME) | |
tokenizer = T5Tokenizer.from_pretrained(URL) | |
model = T5ForConditionalGeneration.from_pretrained(URL) | |
return model, tokenizer, prefix | |
def topk_query(model_typ="gemma",prompt="She has a heart of gold",temperature=0.7,max_length=256): | |
if model_typ not in ["gemma","simplet5_base", "simplet5_large"]: | |
raise ValueError('Invalid model type. Choose "gemma", "simplet5_base", "simplet5_large".') | |
model, tokenizer, prefix = get_model(model_typ) | |
start_time = time.time() | |
input = prefix.replace("{fig}", prompt) | |
print(f"Input to model: \n{input}") | |
if model_typ in ["simplet5_base", "simplet5_large"]: | |
inputs = tokenizer(input, return_tensors="pt") | |
outputs = model.generate( | |
inputs["input_ids"], | |
temperature=temperature, | |
max_length=max_length, | |
num_beams=5, | |
num_return_sequences=5, # Generate 5 responses | |
early_stopping=True | |
) | |
response = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] | |
answer = [response.replace(input, "").strip() for response in response] | |
elif model_typ=="gemma": | |
inputs = tokenizer(input, return_tensors="pt") | |
generate_ids = gemma_model.generate( | |
inputs.input_ids, | |
max_length=max_length, | |
do_sample=True, | |
top_k=50, | |
temperature=temperature, | |
num_return_sequences=5, | |
eos_token_id=gemma_tokenizer.eos_token_id | |
) | |
outputs = gemma_tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
print(f"Model original output:{outputs}\n") | |
answer = [post_process(output,input).replace("\n", "") for output in outputs] | |
# TODO: falcon's outputs dont have much differences, not used in topk response | |
# elif model_typ=="falcon_api": | |
# API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct" | |
# headers = {"Authorization": f"Bearer {access_token}"} | |
# response = api_query(API_URL=API_URL, headers=headers, payload={ | |
# "inputs": input, | |
# "parameters": { | |
# "temperature": temperature, | |
# "top_k": 50, | |
# "num_return_sequences": 5 | |
# } | |
# }) | |
# print(response) | |
# answer = [post_process(item["generated_text"], input) for item in response] | |
else: | |
raise ValueError('Invalid model type. Choose "gemma", "simplet5_base", "simplet5_large".') | |
print(f"Time taken: {time.time()-start_time:.2f} seconds") | |
print(f"processed model output: {answer}") | |
return answer | |
topk_iface = gr.Interface( | |
fn=topk_query, | |
inputs=[ | |
gr.Dropdown( | |
choices=["gemma", "simplet5_base", "simplet5_large"], | |
label="Model Type", | |
value="gemma" | |
), | |
gr.Textbox(label="Prompt", placeholder="Enter your prompt here"), | |
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Temperature"), | |
gr.Slider(minimum=50, maximum=512, step=10, value=256, label="Max Length") | |
], | |
outputs=[ | |
gr.Textbox(label="Response 1"), | |
gr.Textbox(label="Response 2"), | |
gr.Textbox(label="Response 3"), | |
gr.Textbox(label="Response 4"), | |
gr.Textbox(label="Response 5") | |
],theme=gr.themes.Soft(), | |
title=globals.TITLE, | |
description="Generate multiple responses (top 5) based on input sentence, prefix, and temperature. Literal meanings/explanations are provided based on the input figurative sentence.", | |
examples=[ | |
["gemma", "Time flies when you're having fun",0.7], | |
["simplet5_large", "She has a heart of gold",0.5], | |
["gemma", "The sky is the limit",0.6] | |
] | |
) | |
if __name__ == '__main__': | |
topk_iface.launch() |