Spaces:
Running
Running
File size: 2,956 Bytes
5623aa9 927e481 5623aa9 10b9f29 5623aa9 927e481 5623aa9 927e481 a243be8 e91f981 927e481 a243be8 5623aa9 927e481 e91f981 927e481 e91f981 927e481 e91f981 927e481 e91f981 927e481 e91f981 927e481 e91f981 5623aa9 a243be8 415320c a243be8 5623aa9 415320c a243be8 e91f981 927e481 e91f981 a243be8 e91f981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
from typing import get_args
import cv2
import numpy as np
import streamlit as st
from PIL import Image
from open_image_models import LicensePlateDetector
from open_image_models.detection.core.hub import PlateDetectorModel
# Define the available models
detection_models = get_args(PlateDetectorModel)
# Streamlit interface
st.title("🦀 Open Image Models: Pre-trained Models for Object Detection")
st.write("Leverage fast and efficient pre-trained ONNX models for various object detection tasks, starting with license plate detection.")
st.markdown("---")
# Model selection dropdown (specific to license plate detection in this example)
selected_model = st.selectbox("🔍 Select a License Plate Detection Model", detection_models)
# File uploader for images
uploaded_file = st.file_uploader("📂 Upload an image...", type=["jpg", "png", "jpeg", "webp"])
if uploaded_file is not None:
# Load the image using PIL
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
st.write("")
st.write("🔍 **Detecting license plates...**")
# Convert the PIL image to an OpenCV format (NumPy array)
image_np = np.array(image)
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# Initialize the License Plate Detector
lp_detector = LicensePlateDetector(detection_model=selected_model)
# Perform license plate detection
detections = lp_detector.predict(image_cv2)
# Streamlit display for detections
if detections:
st.success(f"✅ {len(detections)} License Plates Detected!")
# Use an expander to show details in a more organized way
with st.expander("See detected plates details"):
for i, detection in enumerate(detections):
# Access attributes of the DetectionResult class
bbox = detection.bounding_box
st.markdown(f"""
**Plate {i+1}:**
- **Label:** {detection.label}
- **Confidence:** {detection.confidence:.2f}
- **Bounding Box:** (x1: {bbox.x1}, y1: {bbox.y1}, x2: {bbox.x2}, y2: {bbox.y2})
""")
else:
st.warning("⚠️ No license plates detected!")
# Annotate and display the image with detected plates
annotated_image = lp_detector.display_predictions(image_cv2)
# Convert the annotated image from BGR to RGB for Streamlit display
annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
st.image(annotated_image_rgb, caption='Annotated Image with Detections', use_column_width=True)
# Add some additional style or layout to make the app more attractive
st.markdown("""
<style>
.stButton>button {
font-size: 16px;
background-color: #4CAF50;
color: white;
border-radius: 8px;
}
.stImage img {
border-radius: 10px;
padding: 10px;
}
</style>
""", unsafe_allow_html=True)
|