Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 18,602 Bytes
f331209 0b13d03 6b416b0 adeee4c 9f49a9f 6b416b0 7ca272c 6b416b0 7ca272c 1d38074 f331209 6265fea f331209 6265fea f331209 4cb9027 f331209 4cb9027 6b416b0 0b13d03 6b416b0 6265fea 6b416b0 f331209 4cb9027 6b416b0 0b13d03 6b416b0 1d38074 6b416b0 6265fea 6b416b0 f331209 6265fea f331209 7ca272c 8ff3549 f331209 0b13d03 7ca272c f331209 4cb9027 8ff3549 4cb9027 f331209 0b13d03 f331209 9f49a9f f331209 7ca272c 9f49a9f 7ca272c 9f49a9f f331209 4cb9027 6265fea 0b13d03 f331209 6265fea 4cb9027 6b416b0 f331209 2148864 f331209 8ff3549 6265fea 0b13d03 f331209 4cb9027 6265fea 4cb9027 6b416b0 f331209 9f49a9f adeee4c 9f49a9f 6b416b0 2148864 6265fea 4cb9027 6b416b0 2148864 6265fea 4cb9027 0b13d03 6b416b0 0b13d03 9f49a9f 7ca272c 9f49a9f 6265fea 6b416b0 1d38074 7ca272c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
#!/usr/bin/env python3
import os
import base64
import streamlit as st
import csv
import time
from dataclasses import dataclass
import zipfile
import logging
from PIL import Image
import numpy as np
import cv2
# Logging setup
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")
# Model Configurations
@dataclass
class ModelConfig:
name: str
base_model: str
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
@property
def model_path(self):
return f"diffusion_models/{self.name}"
# Lazy-loaded Builders
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
def load_model(self, model_path: str, config: ModelConfig):
try:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
logger.info(f"Loading NLP model: {model_path}")
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.config = config
self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
logger.info("NLP model loaded successfully")
except Exception as e:
logger.error(f"Error loading NLP model: {str(e)}")
raise
def fine_tune(self, csv_path):
try:
from torch.utils.data import Dataset, DataLoader
import torch
logger.info(f"Starting NLP fine-tuning with {csv_path}")
class SFTDataset(Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True)
labels = inputs["input_ids"].clone()
labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100
return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]}
data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=2)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
for _ in range(1):
for batch in dataloader:
optimizer.zero_grad()
outputs = self.model(**{k: v.to(self.model.device) for k, v in batch.items()})
outputs.loss.backward()
optimizer.step()
logger.info("NLP fine-tuning completed")
except Exception as e:
logger.error(f"Error in NLP fine-tuning: {str(e)}")
raise
def evaluate(self, prompt: str):
try:
import torch
logger.info(f"Evaluating NLP with prompt: {prompt}")
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50)
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"NLP evaluation result: {result}")
return result
except Exception as e:
logger.error(f"Error in NLP evaluation: {str(e)}")
raise
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: DiffusionConfig):
try:
from diffusers import StableDiffusionPipeline
import torch
logger.info(f"Loading diffusion model: {model_path}")
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
self.config = config
logger.info("Diffusion model loaded successfully")
except Exception as e:
logger.error(f"Error loading diffusion model: {str(e)}")
raise
def fine_tune(self, images, texts):
try:
import torch
import numpy as np
logger.info("Starting diffusion fine-tuning")
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
self.pipeline.unet.train()
for _ in range(1):
for img, text in zip(images, texts):
optimizer.zero_grad()
img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device) / 255.0
latents = self.pipeline.vae.encode(img_tensor).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (1,), device=latents.device)
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
text_emb = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
logger.info("Diffusion fine-tuning completed")
except Exception as e:
logger.error(f"Error in diffusion fine-tuning: {str(e)}")
raise
def generate(self, prompt: str):
try:
logger.info(f"Generating image with prompt: {prompt}")
img = self.pipeline(prompt, num_inference_steps=20).images[0]
logger.info("Image generated successfully")
return img
except Exception as e:
logger.error(f"Error in image generation: {str(e)}")
raise
# Utilities
def get_download_link(file_path, mime_type="text/plain", label="Download"):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
def generate_filename(sequence, ext="png"):
from datetime import datetime
import pytz
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
return f"{sequence}{timestamp}.{ext}"
def get_gallery_files(file_types):
import glob
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
def zip_files(files, zip_name):
with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as zipf:
for file in files:
zipf.write(file, os.path.basename(file))
return zip_name
# Main App
st.title("SFT Tiny Titans 🚀 (Camera Input Action!)")
# Sidebar Galleries
st.sidebar.header("Captured Media 🎨")
gallery_container = st.sidebar.empty()
def update_gallery():
media_files = get_gallery_files(["png"])
with gallery_container:
if media_files:
cols = st.columns(2)
for idx, file in enumerate(media_files[:4]):
with cols[idx % 2]:
st.image(Image.open(file), caption=file.split('/')[-1], use_container_width=True)
# Sidebar Model Management
st.sidebar.subheader("Model Hub 🗂️")
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"])
model_options = {
"NLP (Causal LM)": "HuggingFaceTB/SmolLM-135M",
"CV (Diffusion)": ["CompVis/stable-diffusion-v1-4", "stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"]
}
selected_model = st.sidebar.selectbox("Select Model", ["None"] + ([model_options[model_type]] if "NLP" in model_type else model_options[model_type]))
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model)
with st.spinner("Loading... ⏳"):
try:
builder.load_model(selected_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success("Model loaded! 🎉")
except Exception as e:
st.error(f"Load failed: {str(e)}")
# Tabs
tab1, tab2, tab3 = st.tabs(["Build Titan 🌱", "Camera Snap 📷", "Fine-Tune & Test 🔧🧪"])
with tab1:
st.header("Build Titan 🌱 (Quick Start!)")
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type")
base_model = st.selectbox("Select Model", model_options[model_type], key="build_model")
if st.button("Download Model ⬇️"):
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model)
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
with st.spinner("Fetching... ⏳"):
try:
builder.load_model(base_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success("Titan up! 🎉")
except Exception as e:
st.error(f"Download failed: {str(e)}")
with tab2:
st.header("Camera Snap 📷 (Dual Capture!)")
cols = st.columns(2)
with cols[0]:
st.subheader("Camera 0")
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
if cam0_img:
filename = generate_filename(0)
with open(filename, "wb") as f:
f.write(cam0_img.getvalue())
st.image(Image.open(filename), caption=filename, use_container_width=True)
logger.info(f"Saved snapshot from Camera 0: {filename}")
if 'captured_images' not in st.session_state:
st.session_state['captured_images'] = []
st.session_state['captured_images'].append(filename)
update_gallery()
with cols[1]:
st.subheader("Camera 1")
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
if cam1_img:
filename = generate_filename(1)
with open(filename, "wb") as f:
f.write(cam1_img.getvalue())
st.image(Image.open(filename), caption=filename, use_container_width=True)
logger.info(f"Saved snapshot from Camera 1: {filename}")
if 'captured_images' not in st.session_state:
st.session_state['captured_images'] = []
st.session_state['captured_images'].append(filename)
update_gallery()
st.subheader("Capture 10 Frames (Video Simulation)")
cols = st.columns(2)
with cols[0]:
if st.button("Capture 10 Frames - Cam 0 📸"):
st.session_state['cam0_frames'] = []
for i in range(10):
img = st.camera_input(f"Frame {i} - Cam 0", key=f"cam0_frame_{i}")
if img:
filename = generate_filename(f"0_{i}")
with open(filename, "wb") as f:
f.write(img.getvalue())
st.session_state['cam0_frames'].append(filename)
logger.info(f"Saved frame {i} from Camera 0: {filename}")
time.sleep(0.5) # Simulate video frame rate
if 'captured_images' not in st.session_state:
st.session_state['captured_images'] = []
st.session_state['captured_images'].extend(st.session_state['cam0_frames'])
update_gallery()
for frame in st.session_state['cam0_frames']:
st.image(Image.open(frame), caption=frame, use_container_width=True)
with cols[1]:
if st.button("Capture 10 Frames - Cam 1 📸"):
st.session_state['cam1_frames'] = []
for i in range(10):
img = st.camera_input(f"Frame {i} - Cam 1", key=f"cam1_frame_{i}")
if img:
filename = generate_filename(f"1_{i}")
with open(filename, "wb") as f:
f.write(img.getvalue())
st.session_state['cam1_frames'].append(filename)
logger.info(f"Saved frame {i} from Camera 1: {filename}")
time.sleep(0.5) # Simulate video frame rate
if 'captured_images' not in st.session_state:
st.session_state['captured_images'] = []
st.session_state['captured_images'].extend(st.session_state['cam1_frames'])
update_gallery()
for frame in st.session_state['cam1_frames']:
st.image(Image.open(frame), caption=frame, use_container_width=True)
with tab3:
st.header("Fine-Tune & Test 🔧🧪")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! ⚠️")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Tune 🧠")
uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv")
if uploaded_csv and st.button("Tune NLP 🔄"):
logger.info("Initiating NLP fine-tune")
try:
with open("temp.csv", "wb") as f:
f.write(uploaded_csv.read())
st.session_state['builder'].fine_tune("temp.csv")
st.success("NLP sharpened! 🎉")
except Exception as e:
st.error(f"NLP fine-tune failed: {str(e)}")
st.subheader("NLP Test 🧠")
prompt = st.text_area("Prompt", "What’s a superhero?", key="nlp_test")
if st.button("Test NLP ▶️"):
logger.info("Running NLP test")
try:
result = st.session_state['builder'].evaluate(prompt)
st.write(f"**Answer**: {result}")
except Exception as e:
st.error(f"NLP test failed: {str(e)}")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Tune 🎨")
captured_images = get_gallery_files(["png"])
if len(captured_images) >= 2:
texts = ["Superhero Neon", "Hero Glow", "Cape Spark"][:len(captured_images)]
if st.button("Tune CV 🔄"):
logger.info("Initiating CV fine-tune")
try:
images = [Image.open(img) for img in captured_images]
st.session_state['builder'].fine_tune(images, texts)
st.success("CV polished! 🎉")
except Exception as e:
st.error(f"CV fine-tune failed: {str(e)}")
else:
st.warning("Capture at least 2 images in Camera Snap first! ⚠️")
st.subheader("CV Test 🎨 (Image Set Demo)")
if len(captured_images) >= 2:
if st.button("Run CV Demo ▶️"):
logger.info("Running CV image set demo")
try:
images = [Image.open(img) for img in captured_images[:10]]
prompts = ["Neon " + os.path.basename(img).split('.')[0] for img in captured_images[:10]]
generated_images = []
for prompt in prompts:
img = st.session_state['builder'].generate(prompt)
generated_images.append(img)
cols = st.columns(2)
for idx, (orig, gen) in enumerate(zip(images, generated_images)):
with cols[idx % 2]:
st.image(orig, caption=f"Original: {captured_images[idx]}", use_container_width=True)
st.image(gen, caption=f"Generated: {prompts[idx]}", use_container_width=True)
md_content = "# Image Set Demo\n\nScript of filenames and descriptions:\n"
for i, (img, prompt) in enumerate(zip(captured_images[:10], prompts)):
md_content += f"{i+1}. `{img}` - {prompt}\n"
md_filename = f"demo_metadata_{int(time.time())}.md"
with open(md_filename, "w") as f:
f.write(md_content)
st.markdown(get_download_link(md_filename, "text/markdown", "Download Metadata .md"), unsafe_allow_html=True)
logger.info("CV demo completed with metadata")
except Exception as e:
st.error(f"CV demo failed: {str(e)}")
logger.error(f"Error in CV demo: {str(e)}")
else:
st.warning("Capture at least 2 images in Camera Snap first! ⚠️")
# Display Logs
st.sidebar.subheader("Action Logs 📜")
log_container = st.sidebar.empty()
with log_container:
for record in log_records:
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
update_gallery() # Initial gallery update |