Spaces:
Sleeping
Sleeping
File size: 1,870 Bytes
8f970ae 3c36fab 8f970ae 3c36fab 8f970ae 3c36fab 8f970ae 3c36fab 8f970ae 335d300 8f970ae 3c36fab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
from ultralytics import YOLO
from PIL import Image
import numpy as np
# Load the YOLO model
MODEL_URL = "https://huggingface.co/ayoubsa/yolo_model/resolve/main/best.pt"
model = YOLO(MODEL_URL)
# Define the prediction function
def predict(input_img):
try:
# Convert PIL Image to NumPy array
image_array = np.array(input_img)
# Perform inference
results = model(image_array)
# Debug: Log the results
print(f"Detection results: {results}")
# Extract detected class names
detected_classes = [model.names[int(cls)] for cls in results[0].boxes.cls]
print(f"Detected classes: {detected_classes}")
# Render results on the image
rendered_image = results[0].plot() # Render bounding boxes
if rendered_image is None:
print("Rendered image is None. Something went wrong in the plot() method.")
# Debug: Log image shape after rendering
print(f"Rendered image shape: {rendered_image.shape}")
# Convert the rendered image to a PIL image for output
output_image = Image.fromarray(rendered_image)
return output_image, {cls: 1.0 for cls in detected_classes} # Dummy scores for simplicity
except Exception as e:
print(f"Error during processing: {e}")
return None, {"Error": str(e)}
# Gradio app configuration
gradio_app = gr.Interface(
fn=predict,
inputs=gr.Image(label="Upload an Image", type="pil"),
outputs=[
gr.Image(label="Predicted Image with Bounding Boxes"), # Rendered image with bounding boxes
gr.Label(label="Detected Classes"), # Detected class names
],
title="YOLO Object Detection App",
description="Upload an image, and the YOLO model will detect objects in it.",
)
if __name__ == "__main__":
gradio_app.launch()
|