Spaces:
Sleeping
Sleeping
File size: 15,573 Bytes
b2108ae e5e340b d511c44 e5e340b c0809e5 e5e340b 64e36b4 7cecffc 971fffe 7cecffc e5e340b 340176f e5e340b fbf37ad 8d3eb2c fbf37ad e5e340b 2b898e9 e5e340b b2108ae e5e340b a9b1c26 e5e340b 7cecffc e5e340b 2b898e9 a4e353d 2b898e9 a4e353d 8d3eb2c c0f7916 8ba5467 e5e340b 2b898e9 0a98de7 08750ad 1d5eb19 2b898e9 08750ad e5e340b c0f7916 fbf37ad e5e340b 3127dc9 e5e340b 3127dc9 e5e340b d511c44 90869c2 d511c44 90869c2 d511c44 a4e353d 1258ec5 0b84d55 1258ec5 971fffe 106863f 1258ec5 d511c44 c0f7916 d511c44 1258ec5 106863f 3127dc9 1258ec5 d511c44 a752441 c0f7916 d511c44 b0365ad c875dd7 64e36b4 b0365ad 1eb07a6 d511c44 c875dd7 1eb07a6 c875dd7 b0365ad a3dc2e1 78d4c43 a3dc2e1 78d4c43 21479cb d511c44 90869c2 d511c44 70a8bde 90869c2 1258ec5 0b84d55 1258ec5 971fffe 106863f 1258ec5 3127dc9 2b898e9 106863f 3127dc9 1258ec5 d511c44 c0f7916 7cecffc c2b17c7 78d4c43 c0f7916 f932524 d837990 7cecffc 971fffe 7cecffc f932524 971fffe f932524 7cecffc d837990 f932524 d837990 7cecffc d511c44 7cecffc d511c44 90869c2 7cecffc f932524 7cecffc d511c44 c0f7916 0b84d55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import pytorch_lightning as pl
from neuralforecast.core import NeuralForecast
from neuralforecast.models import NHITS, TimesNet, LSTM, TFT
from neuralforecast.losses.pytorch import HuberMQLoss
from neuralforecast.utils import AirPassengersDF
import time
from st_aggrid import AgGrid
from nixtla import NixtlaClient
import os
@st.cache_resource
def load_model(path, freq):
nf = NeuralForecast.load(path=path)
return nf
@st.cache_resource
def load_all_models():
nhits_paths = {
'D': './M4/NHITS/daily',
'M': './M4/NHITS/monthly',
'H': './M4/NHITS/hourly',
'W': './M4/NHITS/weekly',
'Y': './M4/NHITS/yearly'
}
timesnet_paths = {
'D': './M4/TimesNet/daily',
'M': './M4/TimesNet/monthly',
'H': './M4/TimesNet/hourly',
'W': './M4/TimesNet/weekly',
'Y': './M4/TimesNet/yearly'
}
lstm_paths = {
'D': './M4/LSTM/daily',
'M': './M4/LSTM/monthly',
'H': './M4/LSTM/hourly',
'W': './M4/LSTM/weekly',
'Y': './M4/LSTM/yearly'
}
tft_paths = {
'D': './M4/TFT/daily',
'M': './M4/TFT/monthly',
'H': './M4/TFT/hourly',
'W': './M4/TFT/weekly',
'Y': './M4/TFT/yearly'
}
nhits_models = {freq: load_model(path, freq) for freq, path in nhits_paths.items()}
timesnet_models = {freq: load_model(path, freq) for freq, path in timesnet_paths.items()}
lstm_models = {freq: load_model(path, freq) for freq, path in lstm_paths.items()}
tft_models = {freq: load_model(path, freq) for freq, path in tft_paths.items()}
return nhits_models, timesnet_models, lstm_models, tft_models
def generate_forecast(model, df,tag=False):
if tag == 'retrain':
forecast_df = model.predict()
else:
forecast_df = model.predict(df=df)
return forecast_df
def determine_frequency(df):
df['ds'] = pd.to_datetime(df['ds'])
df = df.set_index('ds')
freq = pd.infer_freq(df.index)
return freq
def plot_forecasts(forecast_df, train_df, title):
fig, ax = plt.subplots(1, 1, figsize=(20, 7))
plot_df = pd.concat([train_df, forecast_df]).set_index('ds')
historical_col = 'y'
forecast_col = next((col for col in plot_df.columns if 'median' in col), None)
lo_col = next((col for col in plot_df.columns if 'lo-90' in col), None)
hi_col = next((col for col in plot_df.columns if 'hi-90' in col), None)
if forecast_col is None:
raise KeyError("No forecast column found in the data.")
plot_df[[historical_col, forecast_col]].plot(ax=ax, linewidth=2, label=['Historical', 'Forecast'])
if lo_col and hi_col:
ax.fill_between(
plot_df.index,
plot_df[lo_col],
plot_df[hi_col],
color='blue',
alpha=0.3,
label='90% Confidence Interval'
)
ax.set_title(title, fontsize=22)
ax.set_ylabel('Value', fontsize=20)
ax.set_xlabel('Timestamp [t]', fontsize=20)
ax.legend(prop={'size': 15})
ax.grid()
st.pyplot(fig)
def select_model_based_on_frequency(freq, nhits_models, timesnet_models, lstm_models, tft_models):
if freq == 'D':
return nhits_models['D'], timesnet_models['D'], lstm_models['D'], tft_models['D']
elif freq == 'ME':
return nhits_models['M'], timesnet_models['M'], lstm_models['M'], tft_models['M']
elif freq == 'H':
return nhits_models['H'], timesnet_models['H'], lstm_models['H'], tft_models['H']
elif freq in ['W', 'W-SUN']:
return nhits_models['W'], timesnet_models['W'], lstm_models['W'], tft_models['W']
elif freq in ['Y', 'Y-DEC']:
return nhits_models['Y'], timesnet_models['Y'], lstm_models['Y'], tft_models['Y']
else:
raise ValueError(f"Unsupported frequency: {freq}")
def select_model(horizon, model_type, max_steps=50):
if model_type == 'NHITS':
return NHITS(input_size=5 * horizon,
h=horizon,
max_steps=max_steps,
stack_types=3*['identity'],
n_blocks=3*[1],
mlp_units=[[256, 256] for _ in range(3)],
n_pool_kernel_size=3*[1],
batch_size=32,
scaler_type='standard',
n_freq_downsample=[12, 4, 1],
loss=HuberMQLoss(level=[90]))
elif model_type == 'TimesNet':
return TimesNet(h=horizon,
input_size=horizon * 5,
hidden_size=16,
conv_hidden_size=32,
loss=HuberMQLoss(level=[90]),
scaler_type='standard',
learning_rate=1e-3,
max_steps=max_steps,
val_check_steps=200,
valid_batch_size=64,
windows_batch_size=128,
inference_windows_batch_size=512)
elif model_type == 'LSTM':
return LSTM(h=horizon,
input_size=horizon * 5,
loss=HuberMQLoss(level=[90]),
scaler_type='standard',
encoder_n_layers=2,
encoder_hidden_size=64,
context_size=10,
decoder_hidden_size=64,
decoder_layers=2,
max_steps=max_steps)
elif model_type == 'TFT':
return TFT(h=horizon,
input_size=horizon,
hidden_size=16,
loss=HuberMQLoss(level=[90]),
learning_rate=0.005,
scaler_type='standard',
windows_batch_size=128,
max_steps=max_steps,
val_check_steps=200,
valid_batch_size=64,
enable_progress_bar=True)
else:
raise ValueError(f"Unsupported model type: {model_type}")
def model_train(df,model, freq):
nf = NeuralForecast(models=[model], freq=freq)
df['ds'] = pd.to_datetime(df['ds'])
nf.fit(df)
return nf
def forecast_time_series(df, model_type, horizon, max_steps,y_col):
start_time = time.time() # Start timing
freq = determine_frequency(df)
st.sidebar.write(f"Data frequency: {freq}")
selected_model = select_model(horizon, model_type, max_steps)
model = model_train(df, selected_model,freq)
forecast_results = {}
st.sidebar.write(f"Generating forecast using {model_type} model...")
forecast_results[model_type] = generate_forecast(model, df, tag='retrain')
for model_name, forecast_df in forecast_results.items():
plot_forecasts(forecast_df, df, f'{model_name} Forecast for {y_col}')
end_time = time.time() # End timing
time_taken = end_time - start_time
st.success(f"Time taken for {model_type} forecast: {time_taken:.2f} seconds")
@st.cache_data
def load_default():
df = AirPassengersDF.copy()
return df
def transfer_learning_forecasting():
st.title("Transfer Learning Forecasting")
nhits_models, timesnet_models, lstm_models, tft_models = load_all_models()
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
else:
df = load_default()
st.session_state.df = df
# Column selection
columns = df.columns.tolist() # Convert Index to list
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
y_col = st.selectbox("Select Target column", options=columns,, index=columns.index('ds') if 'ds' in columns else 0)
# unique_id_col = st.text_input("Unique ID column (default: '1')", value="1")
st.session_state.ds_col = ds_col
st.session_state.y_col = y_col
# Model selection and forecasting
st.sidebar.subheader("Model Selection and Forecasting")
model_choice = st.sidebar.selectbox("Select model", ["NHITS", "TimesNet", "LSTM", "TFT"])
horizon = st.sidebar.number_input("Forecast horizon", value=18)
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
df['unique_id']=1
df = df[['unique_id','ds','y']]
st.session_state.df = df
# Determine frequency of data
frequency = determine_frequency(df)
st.sidebar.write(f"Detected frequency: {frequency}")
col1, col2 = st.columns([2,4])
with col1:
tab_insample, tab_forecast = st.tabs(
["Input data", "Forecast"]
)
with tab_insample:
df_grid = df.drop(columns="unique_id")
st.write(df_grid)
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
with tab_forecast:
df_grid = df.drop(columns="unique_id")
# grid_table = AgGrid(
# df_grid,
# theme="alpine",
# )
with col2:
# Load pre-trained models
nhits_model, timesnet_model, lstm_model, tft_model = select_model_based_on_frequency(frequency, nhits_models, timesnet_models, lstm_models, tft_models)
forecast_results = {}
if st.sidebar.button("Submit"):
start_time = time.time() # Start timing
if model_choice == "NHITS":
forecast_results['NHITS'] = generate_forecast(nhits_model, df)
elif model_choice == "TimesNet":
forecast_results['TimesNet'] = generate_forecast(timesnet_model, df)
elif model_choice == "LSTM":
forecast_results['LSTM'] = generate_forecast(lstm_model, df)
elif model_choice == "TFT":
forecast_results['TFT'] = generate_forecast(tft_model, df)
for model_name, forecast_df in forecast_results.items():
plot_forecasts(forecast_df, df, f'{model_name} Forecast for {y_col}')
end_time = time.time() # End timing
time_taken = end_time - start_time
st.success(f"Time taken for {model_choice} forecast: {time_taken:.2f} seconds")
def dynamic_forecasting():
st.title("Dynamic Forecasting")
st.subheader("Speed depends on CPU/GPU availability", divider="gray")
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
else:
df = load_default()
st.session_state.df = df
# Column selection
columns = df.columns.tolist() # Convert Index to list
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
y_col = st.selectbox("Select Target column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
# unique_id_col = st.text_input("Unique ID column (default: '1')", value="1")
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
df['unique_id']=1
df = df[['unique_id','ds','y']]
st.session_state.df = df
st.session_state.ds_col = ds_col
st.session_state.y_col = y_col
# Dynamic forecasting
st.sidebar.subheader("Dynamic Model Selection and Forecasting")
dynamic_model_choice = st.sidebar.selectbox("Select model for dynamic forecasting", ["NHITS", "TimesNet", "LSTM", "TFT"], key="dynamic_model_choice")
dynamic_horizon = st.sidebar.number_input("Forecast horizon", value=18)
dynamic_max_steps = st.sidebar.number_input('Max steps', value=10)
if st.sidebar.button("Submit"):
forecast_time_series(df, dynamic_model_choice, dynamic_horizon, dynamic_max_steps,y_col)
def timegpt_fcst():
nixtla_token = os.environ.get("NIXTLA_API_KEY")
nixtla_client = NixtlaClient(
api_key = api_key
)
st.title("TimeGPT Forecasting")
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
else:
df = load_default()
st.session_state.df = df
# Column selection
columns = df.columns.tolist() # Convert Index to list
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
y_col = st.selectbox("Select Target column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
id_col = 'ts_test'
df['unique_id']=id_col
freq = determine_frequency(df)
forecast_df = nixtla_client.forecast(
df=df,
h=7,
freq=freq,
level=[90]
)
nixtla_client.plot(
forecast_df,
level=[90],
max_insample_length=365
)
def timegpt_anom():
nixtla_token = os.environ.get("NIXTLA_API_KEY")
nixtla_client = NixtlaClient(
api_key = api_key
)
st.title("TimeGPT Forecasting")
with st.sidebar.expander("Upload and Configure Dataset", expanded=True):
uploaded_file = st.file_uploader("Upload your time series data (CSV)", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.session_state.df = df
else:
df = load_default()
st.session_state.df = df
# Column selection
columns = df.columns.tolist() # Convert Index to list
ds_col = st.selectbox("Select Date/Time column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
y_col = st.selectbox("Select Target column", options=columns, index=columns.index('ds') if 'ds' in columns else 0)
df = df.rename(columns={ds_col: 'ds', y_col: 'y'})
id_col = 'ts_test'
df['unique_id']=id_col
freq = determine_frequency(df)
forecast_df = nixtla_client.forecast(
df=df,
h=7,
freq=freq,
level=[90]
)
nixtla_client.plot(
forecast_df,
level=[90],
max_insample_length=365
)
pg = st.navigation({
"NeuralForecast": [
# Load pages from functions
st.Page(transfer_learning_forecasting, title="Transfer Learning Forecasting", default=True, icon=":material/query_stats:"),
st.Page(dynamic_forecasting, title="Dynamic Forecasting", icon=":material/monitoring:"),
],
"TimeGPT": [
# Load pages from functions
st.Page(timegpt_fcst, title="TimeGPT Forecast", icon=":material/smart_toy:"),
st.Page(timegpt_anom, title="TimeGPT Anomalies Detection", icon=":material/detector_offline:")
]
})
try:
pg.run()
except Exception as e:
st.sidebar.error(f"Something went wrong: {e}", icon=":material/error:")
|