File size: 5,746 Bytes
4ff2d98
 
 
 
a7d8a51
4ff2d98
a7d8a51
4ff2d98
a7d8a51
4ff2d98
 
 
a7d8a51
 
 
4ff2d98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23e7cbd
 
 
 
 
 
 
4ff2d98
 
 
 
4b0268e
4ff2d98
23e7cbd
4ff2d98
a7d8a51
4ff2d98
 
 
 
 
 
23e7cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7d8a51
 
 
4ff2d98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23e7cbd
 
 
 
 
 
 
 
 
 
 
4ff2d98
a7d8a51
 
23e7cbd
 
 
 
 
 
 
 
a7d8a51
23e7cbd
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import streamlit as st
from langchain import memory as lc_memory
from langsmith import Client
from streamlit_feedback import streamlit_feedback
from utils import get_expression_chain, retriever, get_embeddings, create_qdrant_collection
from langchain_core.tracers.context import collect_runs
from qdrant_client import QdrantClient
from dotenv import load_dotenv
import os

load_dotenv()
client = Client()
qdrant_api=os.getenv("QDRANT_API_KEY")
qdrant_url=os.getenv("QDRANT_URL")
qdrant_client = QdrantClient(qdrant_url ,api_key=qdrant_api)
st.set_page_config(page_title = "SUP'ASSISTANT")
st.subheader("Hey there! How can I help you today!")

memory = lc_memory.ConversationBufferMemory(
    chat_memory=lc_memory.StreamlitChatMessageHistory(key="langchain_messages"),
    return_messages=True,
    memory_key="chat_history",
)
st.sidebar.markdown("## Feedback Scale")
feedback_option = (
    "thumbs" if st.sidebar.toggle(label="`Faces` ⇄ `Thumbs`", value=False) else "faces"
)
with st.sidebar:
    model_name = st.selectbox("**Model**", options=["llama-3.1-70b-versatile","gemma2-9b-it","gemma-7b-it","llama-3.2-3b-preview", "llama3-70b-8192", "mixtral-8x7b-32768"])
    temp = st.slider("**Temperature**", min_value=0.0, max_value=1.0, step=0.001)
    n_docs = st.number_input("**Number of retireved documents**", min_value=0, max_value=10, value=5, step=1)
if st.sidebar.button("Clear message history"):
    print("Clearing message history")
    memory.clear()

retriever = retriever(n_docs=n_docs)
# Create Chain
chain = get_expression_chain(retriever,model_name,temp)

for msg in st.session_state.langchain_messages:
    avatar = "🦜" if msg.type == "ai" else None
    with st.chat_message(msg.type, avatar=avatar):
        st.markdown(msg.content)


prompt = st.chat_input(placeholder="What do you need to know about SUP'COM ?")

if prompt :
    with st.chat_message("user"):
        st.write(prompt)
    
    with st.chat_message("assistant", avatar="🦜"):
        message_placeholder = st.empty()
        full_response = ""
        # Define the basic input structure for the chains
        input_dict = {"input": prompt.lower()}


        with collect_runs() as cb:
            for chunk in chain.stream(input_dict, config={"tags": ["SUP'ASSISTANT"]}):
                full_response += chunk.content
                message_placeholder.markdown(full_response + "β–Œ")
            memory.save_context(input_dict, {"output": full_response})
            st.session_state.run_id = cb.traced_runs[0].id
        message_placeholder.markdown(full_response)

        with st.spinner("Just a sec! Dont enter prompts while loading pelase!"):
            run_id = st.session_state.run_id
            question_embedding = get_embeddings(prompt)
            answer_embedding = get_embeddings(full_response)
            # Add question and answer to Qdrant
            qdrant_client.upload_collection(            
                collection_name="chat-history",
                payload=[
                    {"text": prompt, "type": "question", "question_ID": run_id},
                    {"text": full_response, "type": "answer", "question_ID": run_id}
                ],
                vectors=[
                    question_embedding,
                    answer_embedding,
                ],
                parallel=4,
                max_retries=3,
                )

        

if st.session_state.get("run_id"):
    run_id = st.session_state.run_id
    feedback = streamlit_feedback(
        feedback_type=feedback_option,
        optional_text_label="[Optional] Please provide an explanation",
        key=f"feedback_{run_id}",
    )

    # Define score mappings for both "thumbs" and "faces" feedback systems
    score_mappings = {
        "thumbs": {"πŸ‘": 1, "πŸ‘Ž": 0},
        "faces": {"πŸ˜€": 1, "πŸ™‚": 0.75, "😐": 0.5, "πŸ™": 0.25, "😞": 0},
    }

    # Get the score mapping based on the selected feedback option
    scores = score_mappings[feedback_option]

    if feedback:
        # Get the score from the selected feedback option's score mapping
        score = scores.get(feedback["score"])

        if score is not None:
            # Formulate feedback type string incorporating the feedback option
            # and score value
            feedback_type_str = f"{feedback_option} {feedback['score']}"

            # Record the feedback with the formulated feedback type string
            # and optional comment
            with st.spinner("Just a sec! Dont enter prompts while loading pelase!"):
                feedback_record = client.create_feedback(
                    run_id,
                    feedback_type_str,
                    score=score,
                    comment=feedback.get("text"),
                )
                st.session_state.feedback = {
                    "feedback_id": str(feedback_record.id),
                    "score": score,
                }
        else:
            st.warning("Invalid feedback score.")

        with st.spinner("Just a sec! Dont enter prompts while loading pelase!"):
            if feedback.get("text"):
                comment = feedback.get("text")
                feedback_embedding = get_embeddings(comment)
            else:
                comment = "no comment"
                feedback_embedding = get_embeddings(comment)

            
            qdrant_client.upload_collection(            
                collection_name="chat-history",
                payload=[
                    {"text": comment,"Score:":score, "type": "feedback", "question_ID": run_id}
                ],
                vectors=[
                    feedback_embedding
                ],
                parallel=4,
                max_retries=3,
                )