Spaces:
Running
Running
File size: 13,309 Bytes
7ff36f7 e7103ef 7ff36f7 e7103ef df7618f e7103ef 37d35c3 e7103ef 37d35c3 e7103ef e77bee6 b315517 e77bee6 37d35c3 e77bee6 37d35c3 e77bee6 b315517 6636eb2 b315517 e77bee6 e7103ef e77bee6 df7618f e77bee6 df7618f e77bee6 e7103ef 37d35c3 e7103ef 37d35c3 e7103ef df7618f e7103ef df7618f e7103ef c6773b7 e7103ef c6773b7 e7103ef 4fbbca3 e7103ef df7618f e7103ef e77bee6 e7103ef e4db665 c035eb4 e7103ef e77bee6 df7618f e77bee6 e7103ef df7618f e77bee6 df7618f e77bee6 e7103ef e77bee6 e7103ef 4fbbca3 df7618f e7103ef 9a6e63c e7103ef df7618f 9a6e63c 30632f8 9a6e63c e7103ef c6773b7 e7103ef 4fbbca3 e7103ef 4fbbca3 e7103ef c6773b7 e7103ef c6773b7 e7103ef 4fbbca3 e7103ef 6636eb2 7ff36f7 6636eb2 7ff36f7 e7103ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
from pathlib import Path
import altair as alt
import polars as pl
import gradio as gr
DATASETS = []
BENCHMARKS = {
# Name: (device, AMP, compile, single thread)
"Parameters": (None, None, None, None),
"GPU Memory": (None, None, None, None),
"CPU rate": ("cpu", False, False, False),
"CPU rate single core": ("cpu", False, False, True),
"CPU rate with compile": ("cpu", False, True, False),
"CPU rate AMP with compile": ("cpu", True, True, False),
"CUDA rate": ("cuda", False, False, False),
"CUDA rate with compile": ("cuda", False, True, False),
"CUDA rate AMP with compile": ("cuda", True, True, False),
}
def plot_acc_param(param_compare_results_df: pl.DataFrame, width: int = 1000, height: int = 680) -> alt.LayerChart:
df = param_compare_results_df.select(
"Model name",
"Model type",
"Accuracy",
"Top-3 accuracy",
"Resolution",
"Parameters (M)",
"Pareto frontier (p)",
"Intermediate",
"MIM",
"Distilled",
)
base = df.plot.point(
x="Parameters (M)",
y="Accuracy",
color="Model type",
shape="Resolution:N",
tooltip=[
"Parameters (M)",
"Accuracy",
"Top-3 accuracy",
"Model name",
"Model type",
"Resolution",
"Intermediate",
"MIM",
"Distilled",
],
)
text = base.mark_text(align="center", baseline="middle", dy=-10).encode(text="Model name")
frontier = df.plot.line(x="Parameters (M)", y="Pareto frontier (p)").mark_line(
interpolate="step-after", color="red", strokeWidth=0.3, strokeDash=(2, 2)
)
chart = base + text + frontier
return chart.properties(title="Accuray vs Parameter Count", width=width, height=height).configure_scale(zero=False)
def plot_acc_memory(memory_compare_results_df: pl.DataFrame, width: int = 900, height: int = 640) -> alt.LayerChart:
if len(memory_compare_results_df) > 0:
batch_size = memory_compare_results_df["batch_size"][0]
amp = memory_compare_results_df["amp"][0]
else:
batch_size = ""
amp = ""
df = memory_compare_results_df.select(
"Model name",
"Model type",
"Accuracy",
"Top-3 accuracy",
"Resolution",
"Peak GPU memory (MB)",
"Parameters (M)",
"Pareto frontier (mem)",
"Intermediate",
"MIM",
"Distilled",
)
base = df.plot.point(
x="Peak GPU memory (MB)",
y="Accuracy",
color="Model type",
shape="Resolution:N",
tooltip=[
"Peak GPU memory (MB)",
"Parameters (M)",
"Accuracy",
"Top-3 accuracy",
"Model name",
"Model type",
"Resolution",
"Intermediate",
"MIM",
"Distilled",
],
)
text = base.mark_text(align="center", baseline="middle", dy=-10).encode(text="Model name")
frontier = df.plot.line(x="Peak GPU memory (MB)", y="Pareto frontier (mem)").mark_line(
interpolate="step-after", color="red", strokeWidth=0.3, strokeDash=(2, 2)
)
chart = base + text + frontier
return chart.properties(
title=f"Accuray vs GPU Memory (batch size={batch_size}, amp={amp})", width=width, height=height
).configure_scale(zero=False)
def plot_acc_rate(rate_compare_results_df: pl.DataFrame, width: int = 1000, height: int = 680) -> alt.LayerChart:
if len(rate_compare_results_df) > 0:
device = rate_compare_results_df["device"][0]
compiled = rate_compare_results_df["compile"][0]
batch_size = rate_compare_results_df["batch_size"][0]
amp = rate_compare_results_df["amp"][0]
single_thread = rate_compare_results_df["single_thread"][0]
else:
device = ""
compiled = ""
batch_size = ""
amp = ""
single_thread = False
df = rate_compare_results_df.select(
"Model name",
"Model type",
"Accuracy",
"Top-3 accuracy",
"Resolution",
"ms / sample",
"Parameters (M)",
"Pareto frontier (ms)",
"Intermediate",
"MIM",
"Distilled",
)
base = df.plot.point(
x="ms / sample",
y="Accuracy",
color="Model type",
shape="Resolution:N",
tooltip=[
"ms / sample",
"Parameters (M)",
"Accuracy",
"Top-3 accuracy",
"Model name",
"Model type",
"Resolution",
"Intermediate",
"MIM",
"Distilled",
],
)
text = base.mark_text(align="center", baseline="middle", dy=-10).encode(text="Model name")
frontier = df.plot.line(x="ms / sample", y="Pareto frontier (ms)").mark_line(
interpolate="step-after", color="red", strokeWidth=0.3, strokeDash=(2, 2)
)
chart = base + text + frontier
if single_thread is True:
single_thread_title = " Single Core"
else:
single_thread_title = ""
return chart.properties(
title=(
f"Accuracy vs {device.upper()}{single_thread_title} Rate (compile={compiled}, "
f"batch size={batch_size}, amp={amp})"
),
width=width,
height=height,
).configure_scale(zero=False)
def update_data(
dataset: str, benchmark: str, intermediate: bool, mim: bool, dist: bool, log_x: bool, search_bar: str
) -> tuple[alt.LayerChart, pl.DataFrame]:
compare_results_df = pl.read_csv(f"results_{dataset}.csv")
if intermediate is False:
compare_results_df = compare_results_df.filter(pl.col("Intermediate") == intermediate)
if mim is False:
compare_results_df = compare_results_df.filter(pl.col("MIM") == mim)
if dist is False:
compare_results_df = compare_results_df.filter(pl.col("Distilled") == dist)
x_scale_type = "log" if log_x is True else "linear"
# Filter models
compare_results_df = compare_results_df.filter(pl.col("Model name").str.contains(search_bar))
# Parameter count
if benchmark == "Parameters":
param_compare_results_df = compare_results_df.unique(subset=["Model name", "Resolution"]).sort(
"Parameters (M)", descending=False
)
param_compare_results_df = param_compare_results_df.with_columns(
pl.col("Accuracy").cum_max().alias("Pareto frontier (p)")
)
param_compare_results_df = param_compare_results_df.drop(
"Samples / sec", "device", "ms / sample", "Peak GPU memory (MB)"
)
chart = plot_acc_param(param_compare_results_df)
x_max = param_compare_results_df["Parameters (M)"].quantile(0.9)
x_min = param_compare_results_df["Parameters (M)"].quantile(0.1)
chart.layer[0].encoding.x.scale = alt.Scale(domain=[x_min, x_max], type=x_scale_type)
output_df = param_compare_results_df
# Peak memory
elif benchmark == "GPU Memory":
memory_compare_results_df = compare_results_df.drop_nulls(subset=["Peak GPU memory (MB)"])
memory_compare_results_df = memory_compare_results_df.unique(subset=["Model name", "Resolution"]).sort(
"Peak GPU memory (MB)", descending=False
)
memory_compare_results_df = memory_compare_results_df.with_columns(
pl.col("Accuracy").cum_max().alias("Pareto frontier (mem)")
)
memory_compare_results_df = memory_compare_results_df.drop("Samples / sec", "device", "ms / sample")
chart = plot_acc_memory(memory_compare_results_df)
x_max = memory_compare_results_df["Peak GPU memory (MB)"].quantile(0.9)
x_min = memory_compare_results_df["Peak GPU memory (MB)"].quantile(0.1)
chart.layer[0].encoding.x.scale = alt.Scale(domain=[x_min, x_max], type=x_scale_type)
output_df = memory_compare_results_df
# Rate
else:
(device, amp_enabled, compiled, single_thread) = BENCHMARKS[benchmark]
df = compare_results_df.drop_nulls(subset=["ms / sample"])
df = df.filter(device=device, amp=amp_enabled, compile=compiled, single_thread=single_thread)
device_compare_results_df = df.unique(subset=["Model name", "Resolution"]).sort("ms / sample", descending=False)
device_compare_results_df = device_compare_results_df.drop("Peak GPU memory (MB)")
device_compare_results_df = device_compare_results_df.with_columns(
pl.col("Accuracy").cum_max().alias("Pareto frontier (ms)")
)
chart = plot_acc_rate(device_compare_results_df)
x_max = device_compare_results_df["ms / sample"].quantile(0.95)
x_min = device_compare_results_df["ms / sample"].min()
if x_max is not None and x_min is not None:
x_max = x_max * 1.04
x_min = x_min * 0.96
chart.layer[0].encoding.x.scale = alt.Scale(domain=[x_min, x_max], type=x_scale_type)
output_df = device_compare_results_df
output_df = output_df.select(
[
pl.col(col).round(4) if output_df.schema[col] in [pl.Float32, pl.Float64] else col
for col in output_df.columns
]
)
return (chart, output_df.drop("Mistakes", "Samples", "torch_version"))
def app() -> None:
with gr.Blocks(title="Birder Leaderboard", analytics_enabled=False) as leaderboard:
gr.HTML("<center><h1>The Birder Leaderboard</h1></center>")
with gr.Row():
with gr.Column():
pass
with gr.Column():
gr.Markdown(
"""
Leaderboard of all the pre-trained Birder models across multiple datasets.
### Benchmark Setup
* GPU: A5000 ADA Generation
* CPU: AMD Ryzen Threadripper PRO 7975WX
* PyTorch version: 2.5.1+cu124
### Dataset Information
| Name | Training samples | Validation samples | Classes |
|---------------------|------------------|--------------------|-------------|
| arabian-peninsula | 583,868 | 21,634 | 735 |
| eu-common | 569,784 | 19,869 | 707 |
| il-all | 462,346 | 18,614 | 550 |
| il-common | 330,880 | 15,828 | 371 |
"""
)
with gr.Column():
pass
with gr.Row():
with gr.Column():
pass
with gr.Column():
dataset_dropdown = gr.Dropdown(
choices=DATASETS,
label="Select Dataset",
value=DATASETS[0] if DATASETS else None,
)
benchmark_dropdown = gr.Dropdown(
choices=BENCHMARKS.keys(),
label="Select Benchmark",
value=next(iter(BENCHMARKS.keys())) if BENCHMARKS else None,
filterable=False,
)
with gr.Column():
intermediate = gr.Checkbox(
label="Intermediate",
value=True,
info="Show models that underwent intermediate training (extra data)",
)
mim = gr.Checkbox(label="MIM", value=True, info="Show models with Masked Image Modeling pre-training")
dist = gr.Checkbox(label="Distilled", value=True, info="Show distilled models")
log_x = gr.Checkbox(label="Log scale X-axis", value=False)
with gr.Column():
pass
with gr.Row():
with gr.Column():
pass
with gr.Column(scale=2):
search_bar = gr.Textbox(label="Model Filter", placeholder="e.g. convnext, efficient|mobile")
with gr.Column():
pass
plot = gr.Plot(container=False)
table = gr.Dataframe(show_search="search")
inputs = [dataset_dropdown, benchmark_dropdown, intermediate, mim, dist, log_x, search_bar]
outputs = [plot, table]
leaderboard.load(update_data, inputs=inputs, outputs=outputs)
dataset_dropdown.change(update_data, inputs=inputs, outputs=outputs)
benchmark_dropdown.change(update_data, inputs=inputs, outputs=outputs)
intermediate.change(update_data, inputs=inputs, outputs=outputs)
mim.change(update_data, inputs=inputs, outputs=outputs)
dist.change(update_data, inputs=inputs, outputs=outputs)
log_x.change(update_data, inputs=inputs, outputs=outputs)
search_bar.change(update_data, inputs=inputs, outputs=outputs)
leaderboard.launch()
# Launch the app
if __name__ == "__main__":
file_info = []
for p in Path.glob(Path("."), "results_*.csv"):
file_info.append((p.stat().st_size, p.stem.removeprefix("results_")))
DATASETS = [dataset_name for _, dataset_name in sorted(file_info, key=lambda x: x[1], reverse=True)]
app()
|