File size: 4,116 Bytes
3a7387c
33e2dac
7bafad1
cb518f2
d695e20
33e2dac
0aab8d6
3a7387c
 
 
cb518f2
 
 
 
33e2dac
 
d695e20
3a7387c
cb518f2
7bafad1
cb518f2
d695e20
 
33e2dac
 
 
 
 
 
 
 
 
 
 
 
0aab8d6
33e2dac
 
0aab8d6
33e2dac
 
 
 
 
d695e20
 
 
0aab8d6
33e2dac
3156b44
 
33e2dac
 
0aab8d6
 
33e2dac
3156b44
 
33e2dac
 
0aab8d6
3156b44
 
 
 
 
 
ce02056
1f5e987
ce02056
 
cb518f2
ce02056
3156b44
 
33e2dac
 
0aab8d6
 
33e2dac
3156b44
 
33e2dac
 
0aab8d6
3156b44
 
 
 
 
 
3a7387c
ce02056
 
 
 
 
 
 
 
 
3a7387c
6680594
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
from flask import Flask, render_template, request, Response, jsonify
from rss_processor import fetch_rss_feeds, process_and_store_articles, vector_db
import logging
import time
from threading import Thread
import hashlib

app = Flask(__name__)

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def load_feeds_in_background():
    logger.info("Starting to fetch and process RSS feeds in background")
    start_time = time.time()
    articles = fetch_rss_feeds()
    logger.info(f"Fetched {len(articles)} articles")
    process_and_store_articles(articles)
    logger.info("Articles processed and stored")
    end_time = time.time()
    logger.info(f"RSS feed loading took {end_time - start_time:.2f} seconds")

@app.route('/')
def loading():
    # Start loading feeds in a background thread
    thread = Thread(target=load_feeds_in_background)
    thread.daemon = True
    thread.start()
    return render_template("loading.html")

@app.route('/check_feeds', methods=['GET'])
def check_feeds():
    try:
        # Check if vector DB has documents
        docs = vector_db.similarity_search("news", k=1)
        if docs:
            logger.info("Feeds loaded successfully in vector DB")
            return jsonify({"status": "loaded"})
        return jsonify({"status": "loading"}), 202
    except Exception as e:
        logger.error(f"Error checking feeds: {e}")
        return jsonify({"status": "error", "message": str(e)}), 500

@app.route('/index', methods=['GET'])
def index():
    stored_docs = vector_db.similarity_search("news", k=1000)  # Ensure all unique articles
    # Use a set to ensure unique articles by title, link, and description hash
    unique_articles = {}
    for doc in stored_docs:
        title = doc.metadata["title"]
        link = doc.metadata["link"]
        description = doc.metadata["original_description"]
        desc_hash = hashlib.md5(description.encode()).hexdigest()[:10]
        key = f"{title}|{link}|{desc_hash}"
        if key not in unique_articles:
            unique_articles[key] = {
                "title": title,
                "link": link,
                "description": description,
                "category": doc.metadata["category"],
                "published": doc.metadata["published"],
                "image": doc.metadata.get("image", "svg"),
            }
    enriched_articles = list(unique_articles.values())
    logger.info(f"Enriched {len(enriched_articles)} unique articles for display")

    if request.method == 'POST' and 'search' in request.form:
        query = request.form.get('search')
        if query:
            logger.info(f"Processing search query: {query}")
            results = vector_db.similarity_search(query, k=10)
            unique_search_articles = {}
            for doc in results:
                title = doc.metadata["title"]
                link = doc.metadata["link"]
                description = doc.metadata["original_description"]
                desc_hash = hashlib.md5(description.encode()).hexdigest()[:10]
                key = f"{title}|{link}|{desc_hash}"
                if key not in unique_search_articles:
                    unique_search_articles[key] = {
                        "title": title,
                        "link": link,
                        "description": description,
                        "category": doc.metadata["category"],
                        "published": doc.metadata["published"],
                        "image": doc.metadata.get("image", "svg"),
                    }
            enriched_articles = list(unique_search_articles.values())
            logger.info(f"Search returned {len(enriched_articles)} unique results")

    categorized_articles = {}
    for article in enriched_articles:
        cat = article["category"]
        if cat not in categorized_articles:
            categorized_articles[cat] = []
        categorized_articles[cat].append(article)

    return render_template("index.html", categorized_articles=categorized_articles)

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860)