Spaces:
Runtime error
Runtime error
File size: 5,812 Bytes
0d54c12 9845f41 d3bbf05 9845f41 7295a68 9845f41 b8b6ade 9845f41 d3bbf05 9845f41 9cce4c8 fbee9c4 9845f41 d3bbf05 9845f41 b8b6ade d3bbf05 9cce4c8 fbee9c4 d3bbf05 9845f41 0d54c12 9845f41 b8b6ade 7295a68 4bfc3de b8b6ade 8236a85 b8b6ade 8236a85 b8b6ade 9845f41 b8b6ade 9845f41 fbee9c4 9845f41 fbee9c4 9845f41 99813d9 7295a68 9845f41 fbee9c4 9845f41 fbee9c4 9845f41 d3bbf05 fbee9c4 9cce4c8 9845f41 9cce4c8 fbee9c4 9845f41 d3bbf05 fbee9c4 9845f41 9cce4c8 9845f41 9d074e1 9845f41 b8b6ade d3bbf05 9cce4c8 fbee9c4 d3bbf05 9845f41 7295a68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import traceback
import gradio as gr
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel, BitsAndBytesConfig
import torch
import open_clip
from PIL import Image
import requests
from huggingface_hub import hf_hub_download
# Load the Blip base model
preprocessor_blip_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model_blip_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# Load the Blip large model
preprocessor_blip_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model_blip_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
# Load the GIT coco base model
preprocessor_git_base_coco = AutoProcessor.from_pretrained("microsoft/git-base-coco")
model_git_base_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
# Load the GIT coco large model
preprocessor_git_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
model_git_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
# Load the CLIP model
model_oc_coca, _, transform_oc_coca = open_clip.create_model_and_transforms(
model_name="coca_ViT-L-14",
pretrained="mscoco_finetuned_laion2B-s13B-b90k"
)
device = "cuda" if torch.cuda.is_available() else "cpu"
# Transfer the models to the device
model_blip_base.to(device)
model_blip_large.to(device)
model_git_base_coco.to(device)
model_git_large_coco.to(device)
model_oc_coca.to(device)
def generate_caption(
preprocessor,
model,
image,
tokenizer=None,
):
"""
Generate captions for the given image.
-----
Parameters
preprocessor: AutoProcessor
The preprocessor for the model.
model: BlipForConditionalGeneration
The model to use.
image: PIL.Image
The image to generate captions for.
tokenizer: AutoTokenizer
The tokenizer to use. If None, the default tokenizer for the model will be used.
use_float_16: bool
Whether to use float16 precision. This can speed up inference, but may lead to worse results.
-----
Returns
str
The generated caption.
"""
pixel_values = preprocessor(images=image, return_tensors="pt").pixel_values.to(device)
generated_ids = model.generate(
pixel_values=pixel_values,
max_length=50,
)
if tokenizer is None:
generated_caption = preprocessor.batch_decode(generated_ids, skip_special_tokens=True)[0]
else:
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# generated_ids = model.generate(**inputs, max_new_tokens=32)
# generated_text = preprocessor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return generated_caption
def generate_captions_clip(
model,
transform,
image
):
"""
Generate captions for the given image using CLIP.
-----
Parameters
model: VisionEncoderDecoderModel
The CLIP model to use.
transform: Callable
The transform to apply to the image before passing it to the model.
image: PIL.Image
The image to generate captions for.
-----
Returns
str
The generated caption.
"""
im = transform(image).unsqueeze(0).to(device)
with torch.no_grad(), torch.cuda.amp.autocast():
generated = model.generate(im, seq_len=20)
generated_caption = open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "")
return generated_caption
def generate_captions(
image,
max_length,
temperature,
):
"""
Generate captions for the given image.
-----
Parameters
image: PIL.Image
The image to generate captions for.
-----
Returns
str
The generated caption.
"""
caption_blip_base = ""
caption_blip_large = ""
caption_git_large_coco = ""
caption_oc_coca = ""
# Generate captions for the image using the Blip base model
try:
caption_blip_base = generate_caption(preprocessor_blip_base, model_blip_base, image).strip()
except Exception as e:
print(e)
# Generate captions for the image using the Blip large model
try:
caption_blip_large = generate_caption(preprocessor_blip_large, model_blip_large, image).strip()
except Exception as e:
print(e)
# Generate captions for the image using the GIT coco base model
try:
caption_git_base_coco = generate_caption(preprocessor_git_base_coco, model_git_base_coco, image).strip()
except Exception as e:
print(e)
# Generate captions for the image using the GIT coco large model
try:
caption_git_large_coco = generate_caption(preprocessor_git_large_coco, model_git_large_coco, image).strip()
except Exception as e:
print(e)
# Generate captions for the image using the CLIP model
try:
caption_oc_coca = generate_captions_clip(model_oc_coca, transform_oc_coca, image).strip()
except Exception as e:
print(e)
return caption_blip_base, caption_blip_large, caption_git_base_coco, caption_git_large_coco, caption_oc_coca
# Create the interface
iface = gr.Interface(
fn=generate_captions,
# Define the inputs: Image, Slider for Max Length, Slider for Temperature
inputs=[
gr.inputs.Image(type="pil", label="Image"),
gr.inputs.Slider(minimum=16, maximum=64, step=2, default=32, label="Max Length"),
gr.inputs.Slider(minimum=0.5, maximum=1.5, step=0.1, default=1.0, label="Temperature"),
],
# Define the outputs
outputs=[
gr.outputs.Textbox(label="Blip base"),
gr.outputs.Textbox(label="Blip large"),
gr.outputs.Textbox(label="GIT base coco"),
gr.outputs.Textbox(label="GIT large coco"),
gr.outputs.Textbox(label="CLIP"),
],
title="Image Captioning",
description="Generate captions for images using the Blip2 model, the Blip base model, the Blip large model, the GIT large coco model, and the CLIP model.",
enable_queue=True,
)
# Launch the interface
iface.launch(debug=True) |