ImageDetector / app.py
cmckinle's picture
Update app.py
f88c19d verified
raw
history blame
7.14 kB
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
import zipfile
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve, auc
from PIL import Image
import uuid
import tempfile
import pandas as pd
from numpy import exp
import numpy as np
from sklearn.metrics import ConfusionMatrixDisplay
import urllib.request
# Define model
model = "cmckinle/sdxl-flux-detector"
pipe = pipeline("image-classification", model)
fin_sum = []
uid = uuid.uuid4()
# Softmax function
def softmax(vector):
e = exp(vector - vector.max()) # for numerical stability
return e / e.sum()
# Single image classification function
def image_classifier(image):
labels = ["AI", "Real"]
outputs = pipe(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score'])
fin_sum.append(results)
return results
def aiornot(image):
labels = ["AI", "Real"]
feature_extractor = AutoFeatureExtractor.from_pretrained(model)
model_cls = AutoModelForImageClassification.from_pretrained(model)
input = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = model_cls(**input)
logits = outputs.logits
probability = softmax(logits)
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Probabilities:<br>
Real: {float(px[1][0]):.4f}<br>
AI: {float(px[0][0]):.4f}"""
results = {
"Real": float(px[1][0]),
"AI": float(px[0][0])
}
fin_sum.append(results)
return gr.HTML.update(html_out), results
# Function to extract images from zip
def extract_zip(zip_file):
temp_dir = tempfile.mkdtemp()
with zipfile.ZipFile(zip_file, 'r') as z:
z.extractall(temp_dir)
return temp_dir
# Function to classify images in a folder
def classify_images(image_dir):
images = []
labels = []
preds = []
for folder_name, ground_truth_label in [('real', 1), ('ai', 0)]:
folder_path = os.path.join(image_dir, folder_name)
if not os.path.exists(folder_path):
print(f"Folder not found: {folder_path}")
continue
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
try:
img = Image.open(img_path).convert("RGB")
pred = pipe(img)
pred_label = 0 if pred[0]['label'] == 'AI' else 1
preds.append(pred_label)
labels.append(ground_truth_label)
images.append(img_name)
except Exception as e:
print(f"Error processing image {img_name}: {e}")
print(f"Processed {len(images)} images")
return labels, preds, images
# Function to generate evaluation metrics
def evaluate_model(labels, preds):
cm = confusion_matrix(labels, preds)
accuracy = accuracy_score(labels, preds)
roc_score = roc_auc_score(labels, preds)
report = classification_report(labels, preds)
fpr, tpr, _ = roc_curve(labels, preds)
roc_auc = auc(fpr, tpr)
fig, ax = plt.subplots()
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["AI", "Real"])
disp.plot(cmap=plt.cm.Blues, ax=ax)
plt.close(fig)
fig_roc, ax_roc = plt.subplots()
ax_roc.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
ax_roc.plot([0, 1], [0, 1], color='gray', linestyle='--')
ax_roc.set_xlim([0.0, 1.0])
ax_roc.set_ylim([0.0, 1.05])
ax_roc.set_xlabel('False Positive Rate')
ax_roc.set_ylabel('True Positive Rate')
ax_roc.set_title('Receiver Operating Characteristic (ROC) Curve')
ax_roc.legend(loc="lower right")
plt.close(fig_roc)
return accuracy, roc_score, report, fig, fig_roc
# Batch processing
def process_zip(zip_file):
extracted_dir = extract_zip(zip_file.name)
labels, preds, images = classify_images(extracted_dir)
accuracy, roc_score, report, cm_fig, roc_fig = evaluate_model(labels, preds)
shutil.rmtree(extracted_dir) # Clean up extracted files
return accuracy, roc_score, report, cm_fig, roc_fig
# Single image section
def load_url(url):
try:
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
image = Image.open(f"{uid}tmp_im.png")
mes = "Image Loaded"
except Exception as e:
image = None
mes = f"Image not Found<br>Error: {e}"
return image, mes
def tot_prob():
try:
fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum)
fin_sub = 1 - fin_out
out = {
"Real": f"{fin_out:.4f}",
"AI": f"{fin_sub:.4f}"
}
return out
except Exception as e:
print(e)
return None
def fin_clear():
fin_sum.clear()
return None
# Set up Gradio app
with gr.Blocks() as app:
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></h1></center>""")
with gr.Tabs():
# Tab for single image detection
with gr.Tab("Single Image Detection"):
with gr.Column():
inp = gr.Image(type='pil')
in_url = gr.Textbox(label="Image URL")
with gr.Row():
load_btn = gr.Button("Load URL")
btn = gr.Button("Detect AI")
mes = gr.HTML("""""")
with gr.Group():
with gr.Row():
fin = gr.Label(label="Final Probability")
with gr.Row():
with gr.Box():
gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{model}'>{model}</a></b>""")
outp = gr.HTML("""""")
n_out = gr.Label(label="Output")
btn.click(fin_clear, None, fin, show_progress=False)
load_btn.click(load_url, in_url, [inp, mes])
btn.click(aiornot, [inp], [outp, n_out]).then(
tot_prob, None, fin, show_progress=False)
# Tab for batch processing
with gr.Tab("Batch Image Processing"):
zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
batch_btn = gr.Button("Process Batch")
with gr.Group():
gr.Markdown(f"### Results for {model}")
output_acc = gr.Label(label="Accuracy")
output_roc = gr.Label(label="ROC Score")
output_report = gr.Textbox(label="Classification Report", lines=10)
output_cm = gr.Plot(label="Confusion Matrix")
output_roc_plot = gr.Plot(label="ROC Curve")
# Connect batch processing
batch_btn.click(process_zip, zip_file,
[output_acc, output_roc, output_report, output_cm, output_roc_plot])
app.launch(show_api=False, max_threads=24)