File size: 12,998 Bytes
0244d3c
 
 
 
6934db6
 
c28bdaa
d8a969c
527fd08
0e1182d
cbaf223
527fd08
 
 
 
d8a969c
 
 
527fd08
d8a969c
 
 
527fd08
d8a969c
 
527fd08
d8a969c
 
 
527fd08
d8a969c
 
 
 
 
 
 
 
527fd08
 
 
d8a969c
527fd08
d8a969c
0244d3c
527fd08
 
 
f292ecf
 
527fd08
 
 
 
 
f292ecf
527fd08
 
f292ecf
527fd08
7d5d680
 
 
 
 
 
 
6b2ca38
 
 
 
7d5d680
f292ecf
0244d3c
d8a969c
 
 
 
181b7be
 
c28bdaa
 
 
 
181b7be
f292ecf
c28bdaa
 
f292ecf
c28bdaa
527fd08
f292ecf
7d5d680
 
527fd08
a83f370
 
b8e291e
7d5d680
b8e291e
f292ecf
 
a83f370
 
 
f292ecf
 
 
 
527fd08
 
181b7be
ccde0a2
 
f292ecf
cbaf223
 
 
f292ecf
cbaf223
 
 
 
 
 
 
 
f292ecf
cbaf223
 
0e1182d
cbaf223
f292ecf
6b2ca38
cbaf223
f292ecf
cbaf223
 
 
 
 
 
 
 
 
 
f292ecf
cbaf223
 
0e1182d
f292ecf
0244d3c
f292ecf
 
527fd08
b8e291e
7d5d680
b8e291e
 
 
 
527fd08
f292ecf
527fd08
 
 
f292ecf
 
 
0244d3c
f292ecf
0244d3c
f292ecf
 
0244d3c
 
181b7be
 
 
 
f292ecf
181b7be
 
 
 
 
f292ecf
 
 
 
c28bdaa
f292ecf
c28bdaa
181b7be
f292ecf
181b7be
 
c28bdaa
f292ecf
181b7be
 
 
 
c28bdaa
f292ecf
181b7be
 
7e141c2
c28bdaa
181b7be
f292ecf
 
 
 
cf7578d
f292ecf
cf7578d
f292ecf
cf7578d
 
 
 
 
 
 
f292ecf
cf7578d
 
a83f370
f292ecf
181b7be
0244d3c
527fd08
f292ecf
0244d3c
7d5d680
0244d3c
 
181b7be
7d5d680
181b7be
 
0e1182d
f292ecf
 
 
 
 
ccde0a2
cbaf223
 
 
ccde0a2
cbaf223
 
f292ecf
ccde0a2
cbaf223
 
181b7be
0244d3c
 
 
f292ecf
 
0244d3c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import ast
import logging
import numpy as np
import plotly.graph_objects as go

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Function to safely parse JSON or Python dictionary input
def parse_input(json_input):
    logger.debug("Attempting to parse input: %s", json_input)
    try:
        # Try to parse as JSON first
        data = json.loads(json_input)
        logger.debug("Successfully parsed as JSON")
        return data
    except json.JSONDecodeError as e:
        logger.error("JSON parsing failed: %s", str(e))
        try:
            # If JSON fails, try to parse as Python literal (e.g., with single quotes)
            data = ast.literal_eval(json_input)
            logger.debug("Successfully parsed as Python literal")
            # Convert Python dictionary to JSON-compatible format (replace single quotes with double quotes)
            def dict_to_json(obj):
                if isinstance(obj, dict):
                    return {str(k): dict_to_json(v) for k, v in obj.items()}
                elif isinstance(obj, list):
                    return [dict_to_json(item) for item in obj]
                else:
                    return obj
            converted_data = dict_to_json(data)
            logger.debug("Converted to JSON-compatible format")
            return converted_data
        except (SyntaxError, ValueError) as e:
            logger.error("Python literal parsing failed: %s", str(e))
            raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") or correct Python dictionary format.")

# Function to ensure a value is a float, converting from string if necessary
def ensure_float(value):
    if value is None:
        logger.debug("Replacing None logprob with 0.0")
        return 0.0  # Default to 0.0 for None to ensure visualization
    if isinstance(value, str):
        try:
            return float(value)
        except ValueError:
            logger.error("Failed to convert string '%s' to float", value)
            return 0.0  # Default to 0.0 for invalid strings
    if isinstance(value, (int, float)):
        return float(value)
    return 0.0  # Default for any other type

# Function to get or generate a token value (default to "Unknown" if missing)
def get_token(entry):
    token = entry.get("token", "Unknown")
    if token == "Unknown":
        logger.warning("Missing 'token' key for entry: %s, using 'Unknown'", entry)
    return token

# Function to create an empty Plotly figure
def create_empty_figure(title):
    return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)

# Function to process and visualize the full log probs with dynamic top_logprobs, handling missing tokens
def visualize_logprobs(json_input):
    try:
        # Parse the input (handles both JSON and Python dictionaries)
        data = parse_input(json_input)
        
        # Ensure data is a list or dictionary with 'content'
        if isinstance(data, dict) and "content" in data:
            content = data["content"]
        elif isinstance(data, list):
            content = data
        else:
            raise ValueError("Input must be a list or dictionary with 'content' key")

        # Extract tokens, log probs, and top alternatives, skipping non-finite values with fixed filter of -100000
        tokens = []
        logprobs = []
        top_alternatives = []  # List to store all top_logprobs (dynamic length)
        for entry in content:
            logprob = ensure_float(entry.get("logprob", None))
            if math.isfinite(logprob) and logprob >= -100000:
                token = get_token(entry)  # Safely get token, defaulting to "Unknown" if missing
                tokens.append(token)
                logprobs.append(logprob)
                # Get top_logprobs, default to empty dict if None
                top_probs = entry.get("top_logprobs", {})
                if top_probs is None:
                    logger.debug("top_logprobs is None for token: %s, using empty dict", token)
                    top_probs = {}  # Default to empty dict for None
                # Ensure all values in top_logprobs are floats and create a list of tuples
                finite_top_probs = []
                for key, value in top_probs.items():
                    float_value = ensure_float(value)
                    if float_value is not None and math.isfinite(float_value):
                        finite_top_probs.append((key, float_value))
                # Sort by log probability (descending) to get all alternatives
                sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True)
                top_alternatives.append(sorted_probs)  # Store all alternatives, dynamic length
            else:
                logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))

        # Check if there's valid data after filtering
        if not logprobs or not tokens:
            return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))

        # 1. Main Log Probability Plot (Interactive Plotly)
        main_fig = go.Figure()
        main_fig.add_trace(go.Scatter(x=list(range(len(logprobs))), y=logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
        main_fig.update_layout(
            title="Log Probabilities of Generated Tokens",
            xaxis_title="Token Position",
            yaxis_title="Log Probability",
            hovermode="closest",
            clickmode='event+select'
        )
        main_fig.update_traces(
            customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, prob) in enumerate(zip(tokens, logprobs))],
            hovertemplate='<b>%{customdata}</b><extra></extra>'
        )

        # 2. Probability Drop Analysis (Interactive Plotly)
        if len(logprobs) < 2:
            drops_fig = create_empty_figure("Significant Probability Drops")
        else:
            drops = [logprobs[i+1] - logprobs[i] for i in range(len(logprobs)-1)]
            drops_fig = go.Figure()
            drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
            drops_fig.update_layout(
                title="Significant Probability Drops",
                xaxis_title="Token Position",
                yaxis_title="Log Probability Drop",
                hovermode="closest",
                clickmode='event+select'
            )
            drops_fig.update_traces(
                customdata=[f"Drop: {drop:.4f}, From: {tokens[i]} to {tokens[i+1]}, Position: {i}" for i, drop in enumerate(drops)],
                hovertemplate='<b>%{customdata}</b><extra></extra>'
            )

        # Create DataFrame for the table with dynamic top_logprobs
        table_data = []
        max_alternatives = max(len(alts) for alts in top_alternatives) if top_alternatives else 0
        for i, entry in enumerate(content):
            logprob = ensure_float(entry.get("logprob", None))
            if math.isfinite(logprob) and logprob >= -100000 and "top_logprobs" in entry:
                token = get_token(entry)  # Safely get token, defaulting to "Unknown" if missing
                top_logprobs = entry.get("top_logprobs", {})
                if top_logprobs is None:
                    logger.debug("top_logprobs is None for token: %s, using empty dict", token)
                    top_logprobs = {}  # Default to empty dict for None
                # Ensure all values in top_logprobs are floats
                finite_top_logprobs = []
                for key, value in top_logprobs.items():
                    float_value = ensure_float(value)
                    if float_value is not None and math.isfinite(float_value):
                        finite_top_logprobs.append((key, float_value))
                # Sort by log probability (descending)
                sorted_probs = sorted(finite_top_logprobs, key=lambda x: x[1], reverse=True)
                row = [token, f"{logprob:.4f}"]
                for alt_token, alt_logprob in sorted_probs[:max_alternatives]:  # Use max number of alternatives
                    row.append(f"{alt_token}: {alt_logprob:.4f}")
                # Pad with empty strings if fewer alternatives than max
                while len(row) < 2 + max_alternatives:
                    row.append("")
                table_data.append(row)

        df = (
            pd.DataFrame(
                table_data,
                columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)],
            )
            if table_data
            else None
        )

        # Generate colored text
        if logprobs:
            min_logprob = min(logprobs)
            max_logprob = max(logprobs)
            if max_logprob == min_logprob:
                normalized_probs = [0.5] * len(logprobs)
            else:
                normalized_probs = [
                    (lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs
                ]

            colored_text = ""
            for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
                r = int(255 * (1 - norm_prob))  # Red for low confidence
                g = int(255 * norm_prob)        # Green for high confidence
                b = 0
                color = f"rgb({r}, {g}, {b})"
                colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
                if i < len(tokens) - 1:
                    colored_text += " "
            colored_text_html = f"<p>{colored_text}</p>"
        else:
            colored_text_html = "No finite log probabilities to display."

        # Top Token Log Probabilities (Interactive Plotly, dynamic length)
        alt_viz_fig = create_empty_figure("Top Token Log Probabilities") if not logprobs or not top_alternatives else go.Figure()
        if logprobs and top_alternatives:
            for i, (token, probs) in enumerate(zip(tokens, top_alternatives)):
                for j, (alt_tok, prob) in enumerate(probs):
                    alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red', 'purple', 'orange'][:len(probs)]))
            alt_viz_fig.update_layout(
                title="Top Token Log Probabilities",
                xaxis_title="Token (Position)",
                yaxis_title="Log Probability",
                barmode='stack',
                hovermode="closest",
                clickmode='event+select'
            )
            alt_viz_fig.update_traces(
                customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, alts) in enumerate(zip(tokens, top_alternatives)) for alt, prob in alts],
                hovertemplate='<b>%{customdata}</b><extra></extra>'
            )

        return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig)

    except Exception as e:
        logger.error("Visualization failed: %s", str(e))
        return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))

# Gradio interface with full dataset visualization, dynamic top_logprobs, and handling missing tokens
with gr.Blocks(title="Log Probability Visualizer") as app:
    gr.Markdown("# Log Probability Visualizer")
    gr.Markdown(
        "Paste your JSON or Python dictionary log prob data below to visualize all tokens at once. Fixed filter ≥ -100000, dynamic number of top_logprobs, handles missing 'token'."
    )

    with gr.Row():
        json_input = gr.Textbox(
            label="JSON Input",
            lines=10,
            placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
        )

    with gr.Row():
        plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
        drops_output = gr.Plot(label="Probability Drops (Click for Details)")

    with gr.Row():
        table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
        alt_viz_output = gr.Plot(label="Top Token Log Probabilities (Click for Details)")

    with gr.Row():
        text_output = gr.HTML(label="Colored Text (Confidence Visualization)")

    btn = gr.Button("Visualize")
    btn.click(
        fn=visualize_logprobs,
        inputs=[json_input],
        outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output],
    )

app.launch()