File size: 2,909 Bytes
b2aae7c 82cfdb8 b2aae7c 40df644 c3dc8bf 40df644 82cfdb8 40df644 82cfdb8 b2aae7c 9ef5510 b2aae7c 9ef5510 82cfdb8 c3dc8bf b2aae7c 82cfdb8 b2aae7c c9fd9e1 b2aae7c 82cfdb8 b2aae7c c9fd9e1 b2aae7c 9ef5510 b2aae7c 82cfdb8 b2aae7c 82cfdb8 9ef5510 82cfdb8 b2aae7c c9fd9e1 b2aae7c 82cfdb8 b2aae7c 82cfdb8 b2aae7c 82cfdb8 b2aae7c 82cfdb8 40df644 b2aae7c 82cfdb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import torch
from PIL import Image
import random
from peft import PeftModel, LoraConfig
model_id = "CompVis/stable-diffusion-v1-4"
lora_model_id = "codermert/mert_flux"
def load_model():
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cpu")
pipe.safety_checker = None
# Load LoRA weights
config = LoraConfig.from_pretrained(lora_model_id)
pipe.unet = PeftModel.from_pretrained(pipe.unet, lora_model_id)
return pipe
pipe = load_model()
def generate_image(prompt, negative_prompt, steps, cfg_scale, seed, strength):
if seed == -1:
seed = random.randint(1, 1000000000)
generator = torch.Generator().manual_seed(seed)
with torch.no_grad():
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
generator=generator,
).images[0]
return image, seed
css = """
#app-container {
max-width: 800px;
margin-left: auto;
margin-right: auto;
}
"""
examples = [
["A beautiful landscape with mountains and a lake", "ugly, deformed"],
["A futuristic cityscape at night", "daytime, rural"],
["A portrait of a smiling person in a colorful outfit", "monochrome, frowning"],
]
with gr.Blocks(theme='default', css=css) as app:
gr.HTML("<center><h1>Mert Flux LoRA Explorer (CPU Version)</h1></center>")
with gr.Column(elem_id="app-container"):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2)
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What to avoid in the image", lines=2)
with gr.Row():
with gr.Column():
steps = gr.Slider(label="Sampling steps", value=30, minimum=10, maximum=50, step=1)
cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1, maximum=15, step=0.5)
with gr.Column():
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
with gr.Row():
generate_button = gr.Button("Generate", variant='primary')
with gr.Row():
image_output = gr.Image(type="pil", label="Generated Image", show_download_button=True)
with gr.Row():
seed_output = gr.Number(label="Seed Used")
gr.Examples(examples=examples, inputs=[text_prompt, negative_prompt])
generate_button.click(
generate_image,
inputs=[text_prompt, negative_prompt, steps, cfg_scale, seed, strength],
outputs=[image_output, seed_output]
)
app.launch() |