File size: 10,917 Bytes
e5a1544 d4ac8c5 e5a1544 5f27df7 4a53aae 5f27df7 4a53aae 2553966 b37a8e6 5f27df7 e5a1544 d4ac8c5 4a53aae e5a1544 4a53aae e5a1544 4a53aae b37a8e6 e5a1544 b37a8e6 4a53aae 2553966 b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 2553966 b37a8e6 4a53aae 2553966 b37a8e6 5f27df7 b37a8e6 2553966 b37a8e6 4a53aae 2553966 4a53aae 2553966 b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 2553966 4a53aae b37a8e6 2553966 4a53aae 2553966 b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 4a53aae b37a8e6 e5a1544 4a53aae e5a1544 5148899 e421b40 5148899 565e309 5148899 565e309 5148899 e421b40 5148899 565e309 5148899 565e309 e421b40 5148899 e5a1544 4a53aae e5a1544 5148899 b37a8e6 2e20db1 5148899 e421b40 4a53aae e5a1544 5148899 b37a8e6 2e20db1 5148899 e421b40 4a53aae 5148899 b37a8e6 2e20db1 5148899 e421b40 4a53aae 5148899 b37a8e6 2e20db1 5148899 e421b40 4a53aae 5148899 4a53aae 5148899 4a53aae 5148899 4a53aae 565e309 5148899 e5a1544 5148899 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
# -----------------------------
# Configuration
# -----------------------------
# 1) Increase skip rate
SKIP_RATE = 15
# 2) Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 3) Desired input size for faster inference
DESIRED_SIZE = (640, 480)
# -----------------------------
# Global caches for overlay info and frame counters
# -----------------------------
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
emotion_cache = {"text": "Initializing...", "counter": 0}
objects_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval().to(device) # Move model to GPU (if available)
obj_transform = transforms.Compose([transforms.ToTensor()])
# If the FER library supports GPU, it may pick it up automatically.
# Some versions allow device specification, e.g. FER(mtcnn=True, device=device).
emotion_detector = FER(mtcnn=True)
# -----------------------------
# Overlay Drawing Functions
# -----------------------------
def draw_posture_overlay(raw_frame, landmarks):
for (x, y) in landmarks:
cv2.circle(raw_frame, (x, y), 4, (0, 255, 0), -1)
return raw_frame
def draw_boxes_overlay(raw_frame, boxes, color):
for (x1, y1, x2, y2) in boxes:
cv2.rectangle(raw_frame, (x1, y1), (x2, y2), color, 2)
return raw_frame
# -----------------------------
# Heavy (Synchronous) Detection Functions
# -----------------------------
def compute_posture_overlay(image):
# Convert to BGR for MediaPipe
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
# 2) Downscale before processing (optional for posture)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
small_h, small_w, _ = frame_bgr_small.shape
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
pose_results = pose.process(frame_rgb_small)
# Scale landmarks back up to original size if needed
if pose_results.pose_landmarks:
landmarks = []
for lm in pose_results.pose_landmarks.landmark:
# Rescale from the smaller frame to the original size
x = int(lm.x * small_w * (w / small_w))
y = int(lm.y * small_h * (h / small_h))
landmarks.append((x, y))
text = "Posture detected"
else:
landmarks = []
text = "No posture detected"
return landmarks, text
def compute_emotion_overlay(image):
# Convert to BGR
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# 2) Downscale
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb_small)
if emotions:
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
text = f"{top_emotion} ({score:.2f})"
else:
text = "No face detected"
return text
def compute_objects_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# 2) Downscale
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(frame_rgb_small)
img_tensor = obj_transform(image_pil).to(device)
with torch.no_grad():
detections = object_detection_model([img_tensor])[0]
threshold = 0.8
boxes = []
for box, score in zip(detections["boxes"], detections["scores"]):
if score > threshold:
# box is in the scaled-down coordinates;
# you may want to scale them back to the original if needed
boxes.append(tuple(box.int().cpu().numpy()))
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
return boxes, text
def compute_faces_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
# 2) Downscale
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
small_h, small_w, _ = frame_bgr_small.shape
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb_small)
boxes = []
if face_results.detections:
for detection in face_results.detections:
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * small_w)
y = int(bbox.ymin * small_h)
box_w = int(bbox.width * small_w)
box_h = int(bbox.height * small_h)
# Scale bounding box coords back to original if you need full resolution
# E.g., x_original = int(x * (w / small_w)), etc.
boxes.append((x, y, x + box_w, y + box_h))
text = f"Detected {len(boxes)} face(s)"
else:
text = "No faces detected"
return boxes, text
# -----------------------------
# Main Analysis Functions
# -----------------------------
def analyze_posture_current(image):
global posture_cache
posture_cache["counter"] += 1
current_frame = np.array(image)
if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None:
landmarks, text = compute_posture_overlay(image)
posture_cache["landmarks"] = landmarks
posture_cache["text"] = text
output = current_frame.copy()
if posture_cache["landmarks"]:
output = draw_posture_overlay(output, posture_cache["landmarks"])
return output, f"Posture Analysis: {posture_cache['text']}"
def analyze_emotion_current(image):
global emotion_cache
emotion_cache["counter"] += 1
current_frame = np.array(image)
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
text = compute_emotion_overlay(image)
emotion_cache["text"] = text
return current_frame, f"Emotion Analysis: {emotion_cache['text']}"
def analyze_objects_current(image):
global objects_cache
objects_cache["counter"] += 1
current_frame = np.array(image)
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
boxes, text = compute_objects_overlay(image)
objects_cache["boxes"] = boxes
objects_cache["text"] = text
output = current_frame.copy()
if objects_cache["boxes"]:
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
return output, f"Object Detection: {objects_cache['text']}"
def analyze_faces_current(image):
global faces_cache
faces_cache["counter"] += 1
current_frame = np.array(image)
if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None:
boxes, text = compute_faces_overlay(image)
faces_cache["boxes"] = boxes
faces_cache["text"] = text
output = current_frame.copy()
if faces_cache["boxes"]:
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
return output, f"Face Detection: {faces_cache['text']}"
# -----------------------------
# Custom CSS
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #0e0e0e;
color: #ffffff;
font-family: 'Orbitron', sans-serif;
margin: 0;
padding: 0;
}
.gradio-container {
background: linear-gradient(135deg, #1e1e2f, #3e3e55);
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title {
font-size: 2.5em;
color: #ffffff;
text-align: center;
margin-bottom: 0.2em;
}
.gradio-description {
font-size: 1.2em;
text-align: center;
margin-bottom: 1em;
color: #ffffff;
}
"""
# -----------------------------
# Create Individual Interfaces
# -----------------------------
posture_interface = gr.Interface(
fn=analyze_posture_current,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Posture"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
title="Posture Analysis",
description="Detects your posture using MediaPipe.",
live=True # Keep only this interface live to avoid multiple heavy computations
)
emotion_interface = gr.Interface(
fn=analyze_emotion_current,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
title="Emotion Analysis",
description="Detects facial emotions using FER.",
live=False # Turn off streaming to reduce overhead
)
objects_interface = gr.Interface(
fn=analyze_objects_current,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture the Scene"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
title="Object Detection",
description="Detects objects using a pretrained Faster R-CNN.",
live=False
)
faces_interface = gr.Interface(
fn=analyze_faces_current,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
title="Face Detection",
description="Detects faces using MediaPipe.",
live=False
)
# -----------------------------
# Create a Tabbed Interface
# -----------------------------
tabbed_interface = gr.TabbedInterface(
interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface],
tab_names=["Posture", "Emotion", "Objects", "Faces"]
)
# -----------------------------
# Wrap in a Blocks Layout
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
gr.Markdown("<h1 class='gradio-title'>Real-Time Multi-Analysis App</h1>")
gr.Markdown(
"<p class='gradio-description'>Experience a high-tech cinematic interface for real-time "
"analysis of your posture, emotions, objects, and faces using your webcam.</p>"
)
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()
|