Spaces:
Running
Running
File size: 6,372 Bytes
54db127 46546d3 5c6143b 54db127 189832d 54db127 23961f8 54db127 23961f8 54db127 23961f8 54db127 925cb8a 54db127 925cb8a 23961f8 925cb8a 54db127 46546d3 54db127 46546d3 54db127 189832d 54db127 9ce62f1 54db127 23961f8 925cb8a 54db127 925cb8a 23961f8 925cb8a 46546d3 925cb8a 54db127 925cb8a 54db127 37b97bc 54db127 5c6143b 925cb8a 54db127 5c6143b 46546d3 5c6143b 46546d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
# Define the Feedforward Neural Network
class FeedforwardNeuralNetwork(nn.Module):
def __init__(self, input_size, hidden1_size, hidden2_size, hidden3_size, output_size):
super(FeedforwardNeuralNetwork, self).__init__()
self.fc1 = nn.Linear(input_size, hidden1_size)
self.fc2 = nn.Linear(hidden1_size, hidden2_size)
self.fc3 = nn.Linear(hidden2_size, hidden3_size)
self.fc4 = nn.Linear(hidden3_size, output_size)
self.relu = nn.ReLU()
def forward(self, x):
x = x.view(-1, 28 * 28)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.relu(self.fc3(x))
x = self.fc4(x)
return x
# Function to load the data
@st.cache_data
def load_data():
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
return trainloader, testloader
# Function to train the network
def train_network(net, trainloader, criterion, optimizer, epochs):
loss_values = []
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
epoch_loss = running_loss / len(trainloader)
loss_values.append(epoch_loss)
st.write(f'Epoch {epoch + 1}: loss {epoch_loss:.3f}')
st.write('Finished Training')
return loss_values
# Function to test the network
def test_network(net, testloader):
correct = 0
total = 0
all_labels = []
all_predicted = []
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
all_labels.extend(labels.numpy())
all_predicted.extend(predicted.numpy())
accuracy = 100 * correct / total
st.write(f'Accuracy of the network on the 10000 test images: {accuracy:.2f}%')
return accuracy, all_labels, all_predicted
# Load the data
trainloader, testloader = load_data()
# Streamlit interface
st.title("Feedforward Neural Network for MNIST Classification")
st.write("""
This application demonstrates how to build and train a Feedforward Neural Network (FFNN) for image classification using the MNIST dataset. You can adjust hyperparameters, visualize sample images, and see the model's performance.
""")
# Sidebar for input parameters
st.sidebar.header('Model Hyperparameters')
hidden1_size = st.sidebar.slider('Hidden Layer 1 Size', 128, 1024, 512)
hidden2_size = st.sidebar.slider('Hidden Layer 2 Size', 128, 1024, 256)
hidden3_size = st.sidebar.slider('Hidden Layer 3 Size', 128, 1024, 128)
learning_rate = st.sidebar.slider('Learning Rate', 0.001, 0.1, 0.01, step=0.001)
momentum = st.sidebar.slider('Momentum', 0.0, 1.0, 0.9, step=0.1)
epochs = st.sidebar.slider('Epochs', 1, 20, 5)
# Display some sample images
st.write("## Sample Images from MNIST Dataset")
sample_images, sample_labels = next(iter(trainloader))
fig, axes = plt.subplots(1, 6, figsize=(15, 5))
for i in range(6):
axes[i].imshow(sample_images[i].numpy().squeeze(), cmap='gray')
axes[i].set_title(f'Label: {sample_labels[i].item()}')
axes[i].axis('off')
st.pyplot(fig)
# Class distribution
st.write("## Class Distribution in MNIST Dataset")
class_counts = np.bincount(sample_labels.numpy())
fig, ax = plt.subplots()
sns.barplot(x=list(range(10)), y=class_counts, ax=ax)
ax.set_ylabel('Count')
ax.set_title('Class Distribution')
st.pyplot(fig)
# Create the network
net = FeedforwardNeuralNetwork(784, hidden1_size, hidden2_size, hidden3_size, 10)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=momentum)
# Add vertical space
st.write('\n' * 10)
# Train the network
if st.sidebar.button('Train Network'):
loss_values = train_network(net, trainloader, criterion, optimizer, epochs)
# Plot the loss values
plt.figure(figsize=(10, 5))
plt.plot(range(1, epochs + 1), loss_values, marker='o')
plt.title('Training Loss Over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.grid(True)
st.pyplot(plt)
# Store the trained model in the session state
st.session_state['trained_model'] = net
# Test the network
if 'trained_model' in st.session_state and st.sidebar.button('Test Network'):
accuracy, all_labels, all_predicted = test_network(st.session_state['trained_model'], testloader)
st.write(f'Test Accuracy: {accuracy:.2f}%')
# Display results in a table
st.write('Ground Truth vs Predicted')
results = pd.DataFrame({
'Ground Truth': all_labels,
'Predicted': all_predicted
})
st.table(results.head(50)) # Display first 50 results for brevity
# Visualize some test results
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
if 'trained_model' in st.session_state and st.sidebar.button('Show Test Results'):
dataiter = iter(testloader)
images, labels = next(dataiter) # Use next function
imshow(torchvision.utils.make_grid(images))
outputs = st.session_state['trained_model'](images)
_, predicted = torch.max(outputs, 1)
st.write('Ground Truth vs Predicted')
results = pd.DataFrame({
'Ground Truth': labels.numpy(),
'Predicted': predicted.numpy()
})
st.table(results.head(50)) # Display first 50 results for brevity
|