File size: 61,639 Bytes
dd5ca7d
 
 
 
a76f82e
319d05d
dd5ca7d
80ed07e
 
19ef319
 
 
80ed07e
 
c02def7
 
 
 
dd5ca7d
 
 
 
19ef319
dd5ca7d
 
19ef319
dd5ca7d
913575d
dd5ca7d
 
 
19ef319
dd5ca7d
19ef319
 
dd5ca7d
 
19ef319
dd5ca7d
 
 
2690664
19ef319
 
 
 
45cee47
 
 
19ef319
45cee47
19ef319
 
 
 
 
 
 
 
 
 
 
 
 
45cee47
19ef319
 
 
 
 
 
 
 
 
913575d
e14afd8
e0149a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d93a46
e14afd8
 
 
 
dec1797
 
 
e0149a8
 
e14afd8
e0149a8
 
 
 
 
 
 
 
 
e14afd8
 
 
 
 
 
e0149a8
e14afd8
 
 
675a582
e14afd8
 
675a582
 
 
 
 
 
 
e14afd8
 
 
 
 
 
 
 
dec1797
e14afd8
 
dec1797
e14afd8
 
 
 
 
 
 
 
 
e0149a8
 
 
 
 
7a1ddff
7bda4fb
 
19ef319
 
 
675a582
 
 
913575d
6333e73
 
 
 
675a582
6333e73
dd5ca7d
45cee47
19ef319
 
 
 
 
675a582
 
 
19ef319
675a582
913575d
73bcec5
 
 
 
 
675a582
 
 
73bcec5
 
 
 
 
 
 
 
675a582
73bcec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
675a582
 
 
73bcec5
 
 
 
 
 
 
 
 
 
 
675a582
73bcec5
 
 
 
 
 
 
 
 
 
 
 
 
 
c02def7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0357330
7a1ddff
 
c02def7
 
dec1797
 
c02def7
 
dec1797
 
c02def7
 
 
 
 
 
 
 
 
 
 
 
19ef319
c02def7
 
19ef319
675a582
 
 
df770a8
c02def7
3c11a35
f1f1cff
c02def7
 
 
 
df770a8
 
3c11a35
c02def7
 
 
 
 
 
 
 
 
 
 
99f6a90
 
f1f1cff
 
3c11a35
f1f1cff
675a582
5be6912
 
f1f1cff
7a1ddff
f1f1cff
c02def7
 
e0149a8
dec1797
 
 
 
e0149a8
 
 
19ef319
 
 
 
e0149a8
 
e14afd8
e0149a8
 
 
 
e14afd8
e0149a8
e14afd8
e0149a8
dec1797
 
19ef319
73bcec5
dec1797
 
73bcec5
c02def7
 
 
df770a8
c02def7
 
 
3be6fe9
c02def7
 
7a1ddff
c02def7
dec1797
 
 
 
 
3be6fe9
 
19ef319
3be6fe9
e0149a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dec1797
 
 
 
 
 
 
 
45cee47
dec1797
 
 
 
 
3be6fe9
dec1797
 
45cee47
73bcec5
c02def7
 
45cee47
c02def7
 
45cee47
3be6fe9
 
 
c02def7
e0149a8
 
c02def7
 
dec1797
 
 
 
 
c02def7
45cee47
c02def7
45cee47
c02def7
 
dec1797
 
 
 
 
 
 
 
 
 
 
 
73bcec5
dec1797
 
45cee47
dec1797
45cee47
3be6fe9
 
e0149a8
 
3be6fe9
 
 
 
 
 
 
 
 
 
 
19ef319
7a1ddff
dd5ca7d
19ef319
000e941
19ef319
675a582
 
 
000e941
 
 
 
 
 
3994d34
19ef319
675a582
 
19ef319
3994d34
000e941
3994d34
 
000e941
3994d34
000e941
 
 
3994d34
000e941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913575d
3994d34
 
 
 
 
 
 
 
 
 
 
 
 
000e941
 
3994d34
000e941
3994d34
 
 
000e941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3994d34
 
000e941
3994d34
 
 
000e941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2690664
19ef319
000e941
19ef319
 
 
3994d34
19ef319
45cee47
 
 
19ef319
3994d34
 
 
000e941
 
 
 
 
 
 
 
 
 
 
 
19ef319
000e941
 
3994d34
 
000e941
 
 
 
 
 
 
 
3994d34
 
000e941
3994d34
000e941
3994d34
 
 
 
 
 
 
19ef319
 
 
 
3994d34
 
 
 
 
 
 
 
 
19ef319
 
 
3994d34
19ef319
 
 
 
3994d34
 
 
 
 
19ef319
 
3994d34
 
 
 
 
 
 
 
 
 
 
19ef319
45cee47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
000e941
45cee47
 
 
 
 
 
 
 
 
3994d34
 
 
000e941
 
 
 
 
 
 
 
 
 
 
 
45cee47
000e941
 
3994d34
 
000e941
 
 
 
 
 
 
 
45cee47
3994d34
000e941
3994d34
000e941
3994d34
 
 
 
 
 
 
45cee47
 
 
 
 
3994d34
 
 
 
 
 
 
 
45cee47
 
 
3994d34
45cee47
 
 
 
 
3994d34
 
 
 
45cee47
 
 
3994d34
45cee47
3994d34
 
45cee47
 
 
3994d34
45cee47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a1ddff
 
3994d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19ef319
dd5ca7d
 
45cee47
 
dd5ca7d
19ef319
dd5ca7d
675a582
 
 
 
 
ba9a480
 
 
675a582
 
ba9a480
 
675a582
 
e0149a8
675a582
e0149a8
 
 
675a582
 
 
 
dec1797
675a582
dec1797
675a582
 
 
 
 
 
 
 
dec1797
 
 
 
 
 
 
 
 
 
675a582
 
3c11a35
c02def7
3c11a35
a12ae05
7e1ea3e
 
df770a8
675a582
c02def7
 
7e1ea3e
 
c02def7
675a582
 
c02def7
 
675a582
e0149a8
675a582
e0149a8
 
 
dec1797
 
e0149a8
 
 
 
 
dec1797
e0149a8
 
19ef319
 
675a582
 
 
 
 
 
 
 
 
 
45cee47
 
 
675a582
 
 
 
45cee47
675a582
 
 
45cee47
 
 
675a582
 
 
 
 
 
 
19ef319
45cee47
dd5ca7d
45cee47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3994d34
45cee47
 
3994d34
 
45cee47
 
3994d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45cee47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0357330
45cee47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a76f82e
c02def7
913575d
19ef319
675a582
 
 
19ef319
 
 
 
 
 
c02def7
e0149a8
 
 
 
 
 
 
675a582
e0149a8
 
 
 
 
 
 
 
 
 
 
 
e14afd8
c02def7
 
 
 
45cee47
c02def7
 
19ef319
e0149a8
 
 
 
 
 
 
e14afd8
e0149a8
 
da34afc
c02def7
da34afc
c02def7
 
 
 
 
 
 
e0149a8
c02def7
e0149a8
c02def7
e0149a8
c02def7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45cee47
c02def7
45cee47
c02def7
45cee47
c02def7
 
e0149a8
 
c02def7
 
 
 
 
 
 
 
 
 
 
 
 
675a582
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve
from scipy.stats import gaussian_kde

# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
    page_title="Cubic Root Analysis",
    layout="wide",
    initial_sidebar_state="collapsed"
)

def add_sqrt_support(expr_str):
    """Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
    return expr_str.replace('sqrt(', 'sp.sqrt(')

#############################
# 1) Define the discriminant
#############################

# Symbolic variables for the cubic discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)

# Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1

# Symbolic expression for the cubic discriminant
Delta_expr = (
    ((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2
    + (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
)

# Fast numeric function for the discriminant
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")

@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
    """
    Scan z in [z_min, z_max] for sign changes in the discriminant,
    and return approximated roots (where the discriminant is zero).
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    z_grid = np.linspace(z_min, z_max, steps)
    disc_vals = discriminant_func(z_grid, beta, z_a, y_effective)
    roots_found = []
    for i in range(len(z_grid) - 1):
        f1, f2 = disc_vals[i], disc_vals[i+1]
        if np.isnan(f1) or np.isnan(f2):
            continue
        if f1 == 0.0:
            roots_found.append(z_grid[i])
        elif f2 == 0.0:
            roots_found.append(z_grid[i+1])
        elif f1 * f2 < 0:
            zl, zr = z_grid[i], z_grid[i+1]
            for _ in range(50):
                mid = 0.5 * (zl + zr)
                fm = discriminant_func(mid, beta, z_a, y_effective)
                if fm == 0:
                    zl = zr = mid
                    break
                if np.sign(fm) == np.sign(f1):
                    zl, f1 = mid, fm
                else:
                    zr, f2 = mid, fm
            roots_found.append(0.5 * (zl + zr))
    return np.array(roots_found)

@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
    """
    For each beta in [0,1] (with beta_steps points), find the minimum and maximum z 
    for which the discriminant is zero.
    Returns: betas, lower z*(β) values, and upper z*(β) values.
    """
    betas = np.linspace(0, 1, beta_steps)
    z_min_values = []
    z_max_values = []
    for b in betas:
        roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
        if len(roots) == 0:
            z_min_values.append(np.nan)
            z_max_values.append(np.nan)
        else:
            z_min_values.append(np.min(roots))
            z_max_values.append(np.max(roots))
    return betas, np.array(z_min_values), np.array(z_max_values)

@st.cache_data
def compute_eigenvalue_support_boundaries(z_a, y, beta_values, n_samples=100, seeds=5):
    """
    Compute the support boundaries of the eigenvalue distribution by directly
    finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values.
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    min_eigenvalues = np.zeros_like(beta_values)
    max_eigenvalues = np.zeros_like(beta_values)
    
    # Use a progress bar for Streamlit
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    for i, beta in enumerate(beta_values):
        # Update progress
        progress_bar.progress((i + 1) / len(beta_values))
        status_text.text(f"Processing β = {beta:.2f} ({i+1}/{len(beta_values)})")
            
        min_vals = []
        max_vals = []
        
        # Run multiple trials with different seeds for more stable results
        for seed in range(seeds):
            # Set random seed
            np.random.seed(seed * 100 + i)
            
            # Compute dimension p based on aspect ratio y
            n = n_samples
            p = int(y_effective * n)
            
            # Constructing T_n (Population / Shape Matrix)
            k = int(np.floor(beta * p))
            diag_entries = np.concatenate([
                np.full(k, z_a),
                np.full(p - k, 1.0)
            ])
            np.random.shuffle(diag_entries)
            T_n = np.diag(diag_entries)
            
            # Generate the data matrix X with i.i.d. standard normal entries
            X = np.random.randn(p, n)
            
            # Compute the sample covariance matrix S_n = (1/n) * XX^T
            S_n = (1 / n) * (X @ X.T)
            
            # Compute B_n = S_n T_n
            B_n = S_n @ T_n
            
            # Compute eigenvalues of B_n
            eigenvalues = np.linalg.eigvalsh(B_n)
            
            # Find minimum and maximum eigenvalues
            min_vals.append(np.min(eigenvalues))
            max_vals.append(np.max(eigenvalues))
        
        # Average over seeds for stability
        min_eigenvalues[i] = np.mean(min_vals)
        max_eigenvalues[i] = np.mean(max_vals)
    
    # Clear progress indicators
    progress_bar.empty()
    status_text.empty()
    
    return min_eigenvalues, max_eigenvalues

@st.cache_data
def compute_high_y_curve(betas, z_a, y):
    """
    Compute the "High y Expression" curve.
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    a = z_a
    betas = np.array(betas)
    denominator = 1 - 2*a
    if denominator == 0:
        return np.full_like(betas, np.nan)
    numerator = -4*a*(a-1)*y_effective*betas - 2*a*y_effective - 2*a*(2*a-1)
    return numerator/denominator

@st.cache_data
def compute_alternate_low_expr(betas, z_a, y):
    """
    Compute the alternate low expression:
    (z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a)
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    betas = np.array(betas)
    return (z_a * y_effective * betas * (z_a - 1) - 2*z_a*(1 - y_effective) - 2*z_a**2) / (2 + 2*z_a)

@st.cache_data
def compute_max_k_expression(betas, z_a, y, k_samples=1000):
    """
    Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k))
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    a = z_a
    # Sample k values on a logarithmic scale
    k_values = np.logspace(-3, 3, k_samples)
    
    max_vals = np.zeros_like(betas)
    for i, beta in enumerate(betas):
        values = np.zeros_like(k_values)
        for j, k in enumerate(k_values):
            numerator = y_effective*beta*(a-1)*k + (a*k+1)*((y_effective-1)*k-1)
            denominator = (a*k+1)*(k**2+k)
            if abs(denominator) < 1e-10:
                values[j] = np.nan
            else:
                values[j] = numerator/denominator
        
        valid_indices = ~np.isnan(values)
        if np.any(valid_indices):
            max_vals[i] = np.max(values[valid_indices])
        else:
            max_vals[i] = np.nan
            
    return max_vals

@st.cache_data
def compute_min_t_expression(betas, z_a, y, t_samples=1000):
    """
    Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t))
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    a = z_a
    if a <= 0:
        return np.full_like(betas, np.nan)
        
    lower_bound = -1/a + 1e-10  # Avoid division by zero
    t_values = np.linspace(lower_bound, -1e-10, t_samples)
    
    min_vals = np.zeros_like(betas)
    for i, beta in enumerate(betas):
        values = np.zeros_like(t_values)
        for j, t in enumerate(t_values):
            numerator = y_effective*beta*(a-1)*t + (a*t+1)*((y_effective-1)*t-1)
            denominator = (a*t+1)*(t**2+t)
            if abs(denominator) < 1e-10:
                values[j] = np.nan
            else:
                values[j] = numerator/denominator
        
        valid_indices = ~np.isnan(values)
        if np.any(valid_indices):
            min_vals[i] = np.min(values[valid_indices])
        else:
            min_vals[i] = np.nan
            
    return min_vals

@st.cache_data
def compute_derivatives(curve, betas):
    """Compute first and second derivatives of a curve"""
    d1 = np.gradient(curve, betas)
    d2 = np.gradient(d1, betas)
    return d1, d2

def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None):
    """Compute derivatives for all curves"""
    derivatives = {}
    
    # Upper z*(β)
    derivatives['upper'] = compute_derivatives(z_maxs, betas)
    
    # Lower z*(β)
    derivatives['lower'] = compute_derivatives(z_mins, betas)
    
    # Low y Expression (only if provided)
    if low_y_curve is not None:
        derivatives['low_y'] = compute_derivatives(low_y_curve, betas)
    
    # High y Expression
    if high_y_curve is not None:
        derivatives['high_y'] = compute_derivatives(high_y_curve, betas)
    
    # Alternate Low Expression
    if alt_low_expr is not None:
        derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas)
    
    # Custom Expression 1 (if provided)
    if custom_curve1 is not None:
        derivatives['custom1'] = compute_derivatives(custom_curve1, betas)

    # Custom Expression 2 (if provided)
    if custom_curve2 is not None:
        derivatives['custom2'] = compute_derivatives(custom_curve2, betas)
        
    return derivatives

def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True):
    """
    Compute custom curve. If is_s_based=True, compute using s substitution.
    Otherwise, compute direct z(β) expression.
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True)
    local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp}
    
    try:
        # Add sqrt support
        s_num_expr = add_sqrt_support(s_num_expr)
        s_denom_expr = add_sqrt_support(s_denom_expr)
        
        num_expr = sp.sympify(s_num_expr, locals=local_dict)
        denom_expr = sp.sympify(s_denom_expr, locals=local_dict)
        
        if is_s_based:
            # Compute s and substitute into main expression
            s_expr = num_expr / denom_expr
            a = z_a_sym
            numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1)
            denominator = (a*s_expr+1)*(s_expr**2 + s_expr)
            final_expr = numerator/denominator
        else:
            # Direct z(β) expression
            final_expr = num_expr / denom_expr
            
    except sp.SympifyError as e:
        st.error(f"Error parsing expressions: {e}")
        return np.full_like(betas, np.nan)
    
    final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"])
    with np.errstate(divide='ignore', invalid='ignore'):
        result = final_func(betas, z_a, y_effective)
        if np.isscalar(result):
            result = np.full_like(betas, result)
    return result

def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
                          s_num_expr=None, s_denom_expr=None, 
                          z_num_expr=None, z_denom_expr=None,
                          show_derivatives=False,
                          show_high_y=False,
                          show_low_y=False,
                          show_max_k=True,
                          show_min_t=True,
                          use_eigenvalue_method=True,
                          n_samples=1000,
                          seeds=5):
    if z_a <= 0 or y <= 0 or z_min >= z_max:
        st.error("Invalid input parameters.")
        return None

    betas = np.linspace(0, 1, beta_steps)
    
    if use_eigenvalue_method:
        # Use the eigenvalue method to compute boundaries
        st.info("Computing eigenvalue support boundaries. This may take a moment...")
        min_eigs, max_eigs = compute_eigenvalue_support_boundaries(z_a, y, betas, n_samples, seeds)
        z_mins, z_maxs = min_eigs, max_eigs
    else:
        # Use the original discriminant method
        betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
        
    high_y_curve = compute_high_y_curve(betas, z_a, y) if show_high_y else None
    alt_low_expr = compute_alternate_low_expr(betas, z_a, y) if show_low_y else None
    
    # Compute the max/min expressions
    max_k_curve = compute_max_k_expression(betas, z_a, y) if show_max_k else None
    min_t_curve = compute_min_t_expression(betas, z_a, y) if show_min_t else None
    
    # Compute both custom curves
    custom_curve1 = None
    custom_curve2 = None
    if s_num_expr and s_denom_expr:
        custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True)
    if z_num_expr and z_denom_expr:
        custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False)

    # Compute derivatives if needed
    if show_derivatives:
        derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve, 
                                           alt_low_expr, custom_curve1, custom_curve2)
        # Calculate derivatives for max_k and min_t curves if they exist
        if show_max_k:
            max_k_derivatives = compute_derivatives(max_k_curve, betas)
        if show_min_t:
            min_t_derivatives = compute_derivatives(min_t_curve, betas)

    fig = go.Figure()
    
    # Original curves
    if use_eigenvalue_method:
        fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", 
                                name="Upper Bound (Max Eigenvalue)", line=dict(color='blue')))
        fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", 
                                name="Lower Bound (Min Eigenvalue)", line=dict(color='blue')))
        # Add shaded region between curves
        fig.add_trace(go.Scatter(
            x=np.concatenate([betas, betas[::-1]]),
            y=np.concatenate([z_maxs, z_mins[::-1]]),
            fill='toself',
            fillcolor='rgba(0,0,255,0.2)',
            line=dict(color='rgba(255,255,255,0)'),
            showlegend=False,
            hoverinfo='skip'
        ))
    else:
        fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", 
                                name="Upper z*(β)", line=dict(color='blue')))
        fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", 
                                name="Lower z*(β)", line=dict(color='blue')))

    # Add High y Expression only if selected
    if show_high_y and high_y_curve is not None:
        fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines", 
                                name="High y Expression", line=dict(color='green')))
    
    # Add Low Expression only if selected
    if show_low_y and alt_low_expr is not None:
        fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines", 
                                name="Low Expression", line=dict(color='orange')))
    
    # Add the max/min curves if selected
    if show_max_k and max_k_curve is not None:
        fig.add_trace(go.Scatter(x=betas, y=max_k_curve, mode="lines", 
                                name="Max k Expression", line=dict(color='red', width=2)))
    
    if show_min_t and min_t_curve is not None:
        fig.add_trace(go.Scatter(x=betas, y=min_t_curve, mode="lines", 
                                name="Min t Expression", line=dict(color='purple', width=2)))
    
    if custom_curve1 is not None:
        fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines", 
                                name="Custom 1 (s-based)", line=dict(color='magenta')))
    if custom_curve2 is not None:
        fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines", 
                                name="Custom 2 (direct)", line=dict(color='brown')))

    if show_derivatives:
        # First derivatives
        curve_info = [
            ('upper', 'Upper Bound' if use_eigenvalue_method else 'Upper z*(β)', 'blue'),
            ('lower', 'Lower Bound' if use_eigenvalue_method else 'Lower z*(β)', 'lightblue'),
        ]
        
        if show_high_y and high_y_curve is not None:
            curve_info.append(('high_y', 'High y', 'green'))
        if show_low_y and alt_low_expr is not None:
            curve_info.append(('alt_low', 'Alt Low', 'orange'))
        
        if custom_curve1 is not None:
            curve_info.append(('custom1', 'Custom 1', 'magenta'))
        if custom_curve2 is not None:
            curve_info.append(('custom2', 'Custom 2', 'brown'))

        for key, name, color in curve_info:
            if key in derivatives:
                fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines", 
                                        name=f"{name} d/dβ", line=dict(color=color, dash='dash')))
                fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines", 
                                        name=f"{name} d²/dβ²", line=dict(color=color, dash='dot')))
        
        # Add derivatives for max_k and min_t curves if they exist
        if show_max_k and max_k_curve is not None:
            fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[0], mode="lines", 
                                    name="Max k d/dβ", line=dict(color='red', dash='dash')))
            fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[1], mode="lines", 
                                    name="Max k d²/dβ²", line=dict(color='red', dash='dot')))
        
        if show_min_t and min_t_curve is not None:
            fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[0], mode="lines", 
                                    name="Min t d/dβ", line=dict(color='purple', dash='dash')))
            fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[1], mode="lines", 
                                    name="Min t d²/dβ²", line=dict(color='purple', dash='dot')))

    fig.update_layout(
        title="Curves vs β: Eigenvalue Support Boundaries and Asymptotic Expressions" if use_eigenvalue_method 
              else "Curves vs β: z*(β) Boundaries and Asymptotic Expressions",
        xaxis_title="β",
        yaxis_title="Value",
        hovermode="x unified",
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="left",
            x=0.01
        )
    )
    return fig

def compute_cubic_roots(z, beta, z_a, y):
    """
    Compute the roots of the cubic equation for given parameters using SymPy for maximum accuracy.
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    # Import SymPy functions
    from sympy import symbols, solve, im, re, N, Poly
    
    # Create a symbolic variable for the equation
    s = symbols('s')
    
    # Coefficients in the form as^3 + bs^2 + cs + d = 0
    a = z * z_a
    b = z * z_a + z + z_a - z_a*y_effective
    c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
    d = 1
    
    # Handle special cases
    if abs(a) < 1e-10:
        if abs(b) < 1e-10:  # Linear case
            roots = np.array([-d/c, 0, 0], dtype=complex)
        else:  # Quadratic case
            quad_roots = np.roots([b, c, d])
            roots = np.append(quad_roots, 0).astype(complex)
        return roots
    
    try:
        # Create the cubic polynomial
        cubic_eq = Poly(a*s**3 + b*s**2 + c*s + d, s)
        
        # Solve the equation symbolically
        symbolic_roots = solve(cubic_eq, s)
        
        # Convert symbolic roots to complex numbers with high precision
        numerical_roots = []
        for root in symbolic_roots:
            # Use SymPy's N function with high precision
            numerical_root = complex(N(root, 30))
            numerical_roots.append(numerical_root)
        
        # If we got fewer than 3 roots (due to multiplicity), pad with zeros
        while len(numerical_roots) < 3:
            numerical_roots.append(0j)
            
        return np.array(numerical_roots, dtype=complex)
        
    except Exception as e:
        # Fallback to numpy if SymPy has issues
        coeffs = [a, b, c, d]
        return np.roots(coeffs)

def track_roots_consistently(z_values, all_roots):
    """
    Ensure consistent tracking of roots across z values by minimizing discontinuity.
    """
    n_points = len(z_values)
    n_roots = all_roots[0].shape[0]
    tracked_roots = np.zeros((n_points, n_roots), dtype=complex)
    tracked_roots[0] = all_roots[0]
    
    for i in range(1, n_points):
        prev_roots = tracked_roots[i-1]
        current_roots = all_roots[i]
        
        # For each previous root, find the closest current root
        assigned = np.zeros(n_roots, dtype=bool)
        assignments = np.zeros(n_roots, dtype=int)
        
        for j in range(n_roots):
            distances = np.abs(current_roots - prev_roots[j])
            
            # Find the closest unassigned root
            while True:
                best_idx = np.argmin(distances)
                if not assigned[best_idx]:
                    assignments[j] = best_idx
                    assigned[best_idx] = True
                    break
                else:
                    # Mark as infinite distance and try again
                    distances[best_idx] = np.inf
                    
                # Safety check if all are assigned (shouldn't happen)
                if np.all(distances == np.inf):
                    assignments[j] = j  # Default to same index
                    break
        
        # Reorder current roots based on assignments
        tracked_roots[i] = current_roots[assignments]
    
    return tracked_roots

def generate_cubic_discriminant(z, beta, z_a, y_effective):
    """
    Calculate the cubic discriminant using the standard formula.
    For a cubic ax^3 + bx^2 + cx + d:
    Δ = 18abcd - 27a^2d^2 + b^2c^2 - 2b^3d - 9ac^3
    """
    a = z * z_a
    b = z * z_a + z + z_a - z_a*y_effective
    c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
    d = 1
    
    # Standard formula for cubic discriminant
    discriminant = (18*a*b*c*d - 27*a**2*d**2 + b**2*c**2 - 2*b**3*d - 9*a*c**3)
    return discriminant

def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
    """
    Generate Im(s) and Re(s) vs. z plots with improved accuracy using SymPy.
    """
    if z_a <= 0 or y <= 0 or z_min >= z_max:
        st.error("Invalid input parameters.")
        return None, None, None

    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    z_points = np.linspace(z_min, z_max, n_points)
    
    # Collect all roots first
    all_roots = []
    discriminants = []
    
    # Progress indicator
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    for i, z in enumerate(z_points):
        # Update progress
        progress_bar.progress((i + 1) / n_points)
        status_text.text(f"Computing roots for z = {z:.3f} ({i+1}/{n_points})")
        
        # Calculate roots using SymPy
        roots = compute_cubic_roots(z, beta, z_a, y)
        
        # Initial sorting to help with tracking
        roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
        all_roots.append(roots)
        
        # Calculate discriminant
        disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
        discriminants.append(disc)
    
    # Clear progress indicators
    progress_bar.empty()
    status_text.empty()
    
    all_roots = np.array(all_roots)
    discriminants = np.array(discriminants)
    
    # Track roots consistently across z values
    tracked_roots = track_roots_consistently(z_points, all_roots)
    
    # Extract imaginary and real parts
    ims = np.imag(tracked_roots)
    res = np.real(tracked_roots)
    
    # Create figure for imaginary parts
    fig_im = go.Figure()
    for i in range(3):
        fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
                                    line=dict(width=2)))
    
    # Add vertical lines at discriminant zero crossings
    disc_zeros = []
    for i in range(len(discriminants)-1):
        if discriminants[i] * discriminants[i+1] <= 0:  # Sign change
            zero_pos = z_points[i] + (z_points[i+1] - z_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i])
            disc_zeros.append(zero_pos)
            fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
    
    fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                         xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")

    # Create figure for real parts
    fig_re = go.Figure()
    for i in range(3):
        fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
                                    line=dict(width=2)))
    
    # Add vertical lines at discriminant zero crossings
    for zero_pos in disc_zeros:
        fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
    
    fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                         xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
    
    # Create discriminant plot
    fig_disc = go.Figure()
    fig_disc.add_trace(go.Scatter(x=z_points, y=discriminants, mode="lines", 
                                 name="Cubic Discriminant", line=dict(color="black", width=2)))
    fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
    
    fig_disc.update_layout(title=f"Cubic Discriminant vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                          xaxis_title="z", yaxis_title="Discriminant", hovermode="x unified")
    
    return fig_im, fig_re, fig_disc

def analyze_complex_root_structure(beta_values, z, z_a, y):
    """
    Analyze when the cubic equation switches between having all real roots
    and having a complex conjugate pair plus one real root.
    
    Returns:
    - transition_points: beta values where the root structure changes
    - structure_types: list indicating whether each interval has all real roots or complex roots
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    transition_points = []
    structure_types = []
    
    previous_type = None
    
    for beta in beta_values:
        roots = compute_cubic_roots(z, beta, z_a, y)
        
        # Check if all roots are real (imaginary parts close to zero)
        is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
        
        current_type = "real" if is_all_real else "complex"
        
        if previous_type is not None and current_type != previous_type:
            # Found a transition point
            transition_points.append(beta)
            structure_types.append(previous_type)
        
        previous_type = current_type
    
    # Add the final interval type
    if previous_type is not None:
        structure_types.append(previous_type)
    
    return transition_points, structure_types

def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
    """
    Generate Im(s) and Re(s) vs. β plots with improved accuracy using SymPy.
    """
    if z_a <= 0 or y <= 0 or beta_min >= beta_max:
        st.error("Invalid input parameters.")
        return None, None, None

    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    beta_points = np.linspace(beta_min, beta_max, n_points)
    
    # Collect all roots first
    all_roots = []
    discriminants = []
    
    # Progress indicator
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    for i, beta in enumerate(beta_points):
        # Update progress
        progress_bar.progress((i + 1) / n_points)
        status_text.text(f"Computing roots for β = {beta:.3f} ({i+1}/{n_points})")
        
        # Calculate roots using SymPy
        roots = compute_cubic_roots(z, beta, z_a, y)
        
        # Initial sorting to help with tracking
        roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
        all_roots.append(roots)
        
        # Calculate discriminant
        disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
        discriminants.append(disc)
    
    # Clear progress indicators
    progress_bar.empty()
    status_text.empty()
    
    all_roots = np.array(all_roots)
    discriminants = np.array(discriminants)
    
    # Track roots consistently across beta values
    tracked_roots = track_roots_consistently(beta_points, all_roots)
    
    # Extract imaginary and real parts
    ims = np.imag(tracked_roots)
    res = np.real(tracked_roots)
    
    # Create figure for imaginary parts
    fig_im = go.Figure()
    for i in range(3):
        fig_im.add_trace(go.Scatter(x=beta_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
                                    line=dict(width=2)))
    
    # Add vertical lines at discriminant zero crossings
    disc_zeros = []
    for i in range(len(discriminants)-1):
        if discriminants[i] * discriminants[i+1] <= 0:  # Sign change
            zero_pos = beta_points[i] + (beta_points[i+1] - beta_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i])
            disc_zeros.append(zero_pos)
            fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
    
    fig_im.update_layout(title=f"Im{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                         xaxis_title="β", yaxis_title="Im{s}", hovermode="x unified")

    # Create figure for real parts
    fig_re = go.Figure()
    for i in range(3):
        fig_re.add_trace(go.Scatter(x=beta_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
                                    line=dict(width=2)))
    
    # Add vertical lines at discriminant zero crossings
    for zero_pos in disc_zeros:
        fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
    
    fig_re.update_layout(title=f"Re{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                         xaxis_title="β", yaxis_title="Re{s}", hovermode="x unified")
    
    # Create discriminant plot
    fig_disc = go.Figure()
    fig_disc.add_trace(go.Scatter(x=beta_points, y=discriminants, mode="lines", 
                                 name="Cubic Discriminant", line=dict(color="black", width=2)))
    fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
    
    fig_disc.update_layout(title=f"Cubic Discriminant vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                          xaxis_title="β", yaxis_title="Discriminant", hovermode="x unified")
    
    return fig_im, fig_re, fig_disc

def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0, 
                          beta_steps=100, z_steps=100):
    """
    Generate a phase diagram showing regions of complex and real roots.
    
    Returns a heatmap where:
    - Value 1 (red): Region with all real roots
    - Value -1 (blue): Region with complex roots
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    beta_values = np.linspace(beta_min, beta_max, beta_steps)
    z_values = np.linspace(z_min, z_max, z_steps)
    
    # Initialize phase map
    phase_map = np.zeros((z_steps, beta_steps))
    
    # Progress tracking
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    for i, z in enumerate(z_values):
        # Update progress
        progress_bar.progress((i + 1) / len(z_values))
        status_text.text(f"Analyzing phase at z = {z:.2f} ({i+1}/{len(z_values)})")
        
        for j, beta in enumerate(beta_values):
            roots = compute_cubic_roots(z, beta, z_a, y)
            
            # Check if all roots are real (imaginary parts close to zero)
            is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
            
            phase_map[i, j] = 1 if is_all_real else -1
    
    # Clear progress indicators
    progress_bar.empty()
    status_text.empty()
    
    # Create heatmap
    fig = go.Figure(data=go.Heatmap(
        z=phase_map,
        x=beta_values,
        y=z_values,
        colorscale=[[0, 'blue'], [0.5, 'white'], [1.0, 'red']],
        zmin=-1,
        zmax=1,
        showscale=True,
        colorbar=dict(
            title="Root Type",
            tickvals=[-1, 1],
            ticktext=["Complex Roots", "All Real Roots"]
        )
    ))
    
    fig.update_layout(
        title=f"Phase Diagram: Root Structure (y={y:.3f}, z_a={z_a:.3f})",
        xaxis_title="β",
        yaxis_title="z",
        hovermode="closest"
    )
    
    return fig

@st.cache_data
def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
    """
    Generate the eigenvalue distribution of B_n = S_n T_n as n→∞
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    # Set random seed
    np.random.seed(seed)
    
    # Compute dimension p based on aspect ratio y
    p = int(y_effective * n)
    
    # Constructing T_n (Population / Shape Matrix) - using the approach from the second script
    k = int(np.floor(beta * p))
    diag_entries = np.concatenate([
        np.full(k, z_a),
        np.full(p - k, 1.0)
    ])
    np.random.shuffle(diag_entries)
    T_n = np.diag(diag_entries)
    
    # Generate the data matrix X with i.i.d. standard normal entries
    X = np.random.randn(p, n)
    
    # Compute the sample covariance matrix S_n = (1/n) * XX^T
    S_n = (1 / n) * (X @ X.T)
    
    # Compute B_n = S_n T_n
    B_n = S_n @ T_n
    
    # Compute eigenvalues of B_n
    eigenvalues = np.linalg.eigvalsh(B_n)
    
    # Use KDE to compute a smooth density estimate
    kde = gaussian_kde(eigenvalues)
    x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500)
    kde_vals = kde(x_vals)
    
    # Create figure
    fig = go.Figure()
    
    # Add histogram trace
    fig.add_trace(go.Histogram(x=eigenvalues, histnorm='probability density', 
                              name="Histogram", marker=dict(color='blue', opacity=0.6)))
    
    # Add KDE trace
    fig.add_trace(go.Scatter(x=x_vals, y=kde_vals, mode="lines", 
                            name="KDE", line=dict(color='red', width=2)))
    
    fig.update_layout(
        title=f"Eigenvalue Distribution for B_n = S_n T_n (y={y:.1f}, β={beta:.2f}, a={z_a:.1f})",
        xaxis_title="Eigenvalue",
        yaxis_title="Density",
        hovermode="closest",
        showlegend=True
    )
    
    return fig, eigenvalues

# ----------------- Streamlit UI -----------------
st.title("Cubic Root Analysis")

# Define three tabs
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Complex Root Analysis", "Differential Analysis"])

# ----- Tab 1: z*(β) Curves -----
with tab1:
    st.header("Eigenvalue Support Boundaries")
    
    # Cleaner layout with better column organization
    col1, col2, col3 = st.columns([1, 1, 2])
    
    with col1:
        z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
        y_1 = st.number_input("y", value=1.0, key="y_1")
        
    with col2:
        z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
        z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
    
    with col1:
        method_type = st.radio(
            "Calculation Method",
            ["Eigenvalue Method", "Discriminant Method"],
            index=0  # Default to eigenvalue method
        )
    
    # Advanced settings in collapsed expanders
    with st.expander("Method Settings", expanded=False):
        if method_type == "Eigenvalue Method":
            beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, 
                                  key="beta_steps_eigen")
            n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, 
                                step=100)
            seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1)
        else:
            beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, 
                                  key="beta_steps")
            z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, 
                              step=1000, key="z_steps")
    
    # Curve visibility options
    with st.expander("Curve Visibility", expanded=False):
        col_vis1, col_vis2 = st.columns(2)
        with col_vis1:
            show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y")
            show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k")
        with col_vis2:
            show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y")
            show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t")
    
    # Custom expressions collapsed by default
    with st.expander("Custom Expression 1 (s-based)", expanded=False):
        st.markdown("""Enter expressions for s = numerator/denominator 
                    (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
        st.latex(r"\text{This s will be inserted into:}")
        st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
        s_num = st.text_input("s numerator", value="", key="s_num")
        s_denom = st.text_input("s denominator", value="", key="s_denom")

    with st.expander("Custom Expression 2 (direct z(β))", expanded=False):
        st.markdown("""Enter direct expression for z(β) = numerator/denominator 
                    (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
        z_num = st.text_input("z(β) numerator", value="", key="z_num")
        z_denom = st.text_input("z(β) denominator", value="", key="z_denom")

    # Move show_derivatives to main UI level for better visibility
    with col2:
        show_derivatives = st.checkbox("Show derivatives", value=False)

    # Compute button
    if st.button("Compute Curves", key="tab1_button"):
        with col3:
            use_eigenvalue_method = (method_type == "Eigenvalue Method")
            if use_eigenvalue_method:
                fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None,
                                            s_num, s_denom, z_num, z_denom, show_derivatives, 
                                            show_high_y, show_low_y, show_max_k, show_min_t,
                                            use_eigenvalue_method=True, n_samples=n_samples, 
                                            seeds=seeds)
            else:
                fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
                                            s_num, s_denom, z_num, z_denom, show_derivatives,
                                            show_high_y, show_low_y, show_max_k, show_min_t,
                                            use_eigenvalue_method=False)
            
            if fig is not None:
                st.plotly_chart(fig, use_container_width=True)
                
                # Curve explanations in collapsed expander
                with st.expander("Curve Explanations", expanded=False):
                    if use_eigenvalue_method:
                        st.markdown("""
                        - **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n
                        - **Shaded Region**: Eigenvalue support region
                        - **High y Expression** (Green): Asymptotic approximation for high y values
                        - **Low Expression** (Orange): Alternative asymptotic expression
                        - **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
                        - **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
                        - **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
                        - **Custom Expression 2** (Brown): Direct z(β) expression
                        """)
                    else:
                        st.markdown("""
                        - **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
                        - **Lower z*(β)** (Blue): Minimum z value where discriminant is zero
                        - **High y Expression** (Green): Asymptotic approximation for high y values
                        - **Low Expression** (Orange): Alternative asymptotic expression
                        - **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
                        - **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
                        - **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
                        - **Custom Expression 2** (Brown): Direct z(β) expression
                        """)
                    if show_derivatives:
                        st.markdown("""
                        Derivatives are shown as:
                        - Dashed lines: First derivatives (d/dβ)
                        - Dotted lines: Second derivatives (d²/dβ²)
                        """)

# ----- Tab 2: Complex Root Analysis -----
with tab2:
    st.header("Complex Root Analysis")
    
    # Create tabs within the page for different plots
    plot_tabs = st.tabs(["Im{s} vs. z", "Im{s} vs. β", "Phase Diagram", "Eigenvalue Distribution"])
    
    # Tab for Im{s} vs. z plot
    with plot_tabs[0]:
        col1, col2 = st.columns([1, 2])
        with col1:
            beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z")
            y_z = st.number_input("y", value=1.0, key="y_tab2_z")
            z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z")
            z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z")
            z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z")
            with st.expander("Resolution Settings", expanded=False):
                z_points = st.slider("z grid points", min_value=100, max_value=2000, value=500, step=100, key="z_points_z")
        if st.button("Compute Complex Roots vs. z", key="tab2_button_z"):
            with col2:
                fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points)
                if fig_im is not None and fig_re is not None and fig_disc is not None:
                    st.plotly_chart(fig_im, use_container_width=True)
                    st.plotly_chart(fig_re, use_container_width=True)
                    st.plotly_chart(fig_disc, use_container_width=True)
                    
                    with st.expander("Root Structure Analysis", expanded=False):
                        st.markdown("""
                        ### Root Structure Explanation
                        
                        The red dashed vertical lines mark the points where the cubic discriminant equals zero.
                        At these points, the cubic equation's root structure changes:
                        
                        - When the discriminant is positive, the cubic has three distinct real roots.
                        - When the discriminant is negative, the cubic has one real root and two complex conjugate roots.
                        - When the discriminant is exactly zero, the cubic has at least two equal roots.
                        
                        These transition points align perfectly with the z*(β) boundary curves from the first tab,
                        which represent exactly these transitions in the (β,z) plane.
                        """)

    # New tab for Im{s} vs. β plot
    with plot_tabs[1]:
        col1, col2 = st.columns([1, 2])
        with col1:
            z_beta = st.number_input("z", value=1.0, key="z_tab2_beta")
            y_beta = st.number_input("y", value=1.0, key="y_tab2_beta")
            z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta")
            beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2")
            beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2")
            with st.expander("Resolution Settings", expanded=False):
                beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points")
        if st.button("Compute Complex Roots vs. β", key="tab2_button_beta"):
            with col2:
                fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots(
                    z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points)
                
                if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None:
                    st.plotly_chart(fig_im_beta, use_container_width=True)
                    st.plotly_chart(fig_re_beta, use_container_width=True)
                    st.plotly_chart(fig_disc, use_container_width=True)
                    
                    # Add analysis of transition points
                    transition_points, structure_types = analyze_complex_root_structure(
                        np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta)
                    
                    if transition_points:
                        st.subheader("Root Structure Transition Points")
                        for i, beta in enumerate(transition_points):
                            prev_type = structure_types[i]
                            next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown"
                            st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots")
                    else:
                        st.info("No transitions detected in root structure across this β range.")
                    
                    # Explanation
                    with st.expander("Analysis Explanation", expanded=False):
                        st.markdown("""
                        ### Interpreting the Plots
                        
                        - **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real.
                        - **Re{s} vs. β**: Shows how the real parts of the roots change with β.
                        - **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes.
                          - When discriminant < 0: The cubic has one real root and two complex conjugate roots.
                          - When discriminant > 0: The cubic has three distinct real roots.
                          - When discriminant = 0: The cubic has multiple roots (at least two roots are equal).
                        
                        The vertical red dashed lines mark the transition points where the root structure changes.
                        """)
    
    # Tab for Phase Diagram
    with plot_tabs[2]:
        col1, col2 = st.columns([1, 2])
        with col1:
            z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase")
            y_phase = st.number_input("y", value=1.0, key="y_phase")
            beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase")
            beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase")
            z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase")
            z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase")
            
            with st.expander("Resolution Settings", expanded=False):
                beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase")
                z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase")
        
        if st.button("Generate Phase Diagram", key="tab2_button_phase"):
            with col2:
                st.info("Generating phase diagram. This may take a while depending on resolution...")
                fig_phase = generate_phase_diagram(
                    z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase, 
                    beta_steps_phase, z_steps_phase)
                
                if fig_phase is not None:
                    st.plotly_chart(fig_phase, use_container_width=True)
                    
                    with st.expander("Phase Diagram Explanation", expanded=False):
                        st.markdown("""
                        ### Understanding the Phase Diagram
                        
                        This heatmap shows the regions in the (β, z) plane where:
                        
                        - **Red Regions**: The cubic equation has all real roots
                        - **Blue Regions**: The cubic equation has one real root and two complex conjugate roots
                        
                        The boundaries between these regions represent values where the discriminant is zero,
                        which are the exact same curves as the z*(β) boundaries in the first tab. This phase
                        diagram provides a comprehensive view of the eigenvalue support structure.
                        """)

    # Eigenvalue distribution tab
    with plot_tabs[3]:
        st.subheader("Eigenvalue Distribution for B_n = S_n T_n")
        with st.expander("Simulation Information", expanded=False):
            st.markdown("""
            This simulation generates the eigenvalue distribution of B_n as n→∞, where:
            - B_n = (1/n)XX^T with X being a p×n matrix
            - p/n → y as n→∞
            - The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1)
            """)
        
        col_eigen1, col_eigen2 = st.columns([1, 2])
        with col_eigen1:
            beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen")
            y_eigen = st.number_input("y", value=1.0, key="y_eigen")
            z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen")
            n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
            sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
            
            # Add comparison option
            show_theoretical = st.checkbox("Show theoretical boundaries", value=True)
            show_empirical_stats = st.checkbox("Show empirical statistics", value=True)

        if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"):
            with col_eigen2:
                # Generate the eigenvalue distribution
                fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed)
                
                # If requested, compute and add theoretical boundaries
                if show_theoretical:
                    # Calculate min and max eigenvalues using the support boundary functions
                    betas = np.array([beta_eigen])
                    min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5)
                    
                    # Add vertical lines for boundaries
                    fig_eigen.add_vline(
                        x=min_eig[0], 
                        line=dict(color="red", width=2, dash="dash"),
                        annotation_text="Min theoretical",
                        annotation_position="top right"
                    )
                    fig_eigen.add_vline(
                        x=max_eig[0], 
                        line=dict(color="red", width=2, dash="dash"),
                        annotation_text="Max theoretical",
                        annotation_position="top left"
                    )
                
                # Display the plot
                st.plotly_chart(fig_eigen, use_container_width=True)
                
                # Add comparison of empirical vs theoretical bounds
                if show_theoretical and show_empirical_stats:
                    empirical_min = eigenvalues.min()
                    empirical_max = eigenvalues.max()
                    
                    st.markdown("### Comparison of Empirical vs Theoretical Bounds")
                    col1, col2, col3 = st.columns(3)
                    with col1:
                        st.metric("Theoretical Min", f"{min_eig[0]:.4f}")
                        st.metric("Theoretical Max", f"{max_eig[0]:.4f}")
                        st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.4f}")
                    with col2:
                        st.metric("Empirical Min", f"{empirical_min:.4f}")
                        st.metric("Empirical Max", f"{empirical_max:.4f}")
                        st.metric("Empirical Width", f"{empirical_max - empirical_min:.4f}")
                    with col3:
                        st.metric("Min Difference", f"{empirical_min - min_eig[0]:.4f}")
                        st.metric("Max Difference", f"{empirical_max - max_eig[0]:.4f}")
                        st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.4f}")
                
                # Display additional statistics
                if show_empirical_stats:
                    st.markdown("### Eigenvalue Statistics")
                    col1, col2 = st.columns(2)
                    with col1:
                        st.metric("Mean", f"{np.mean(eigenvalues):.4f}")
                        st.metric("Median", f"{np.median(eigenvalues):.4f}")
                    with col2:
                        st.metric("Standard Deviation", f"{np.std(eigenvalues):.4f}")
                        st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.4f}")

# ----- Tab 3: Differential Analysis -----
with tab3:
    st.header("Differential Analysis vs. β")
    with st.expander("Description", expanded=False):
        st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.")
    
    col1, col2 = st.columns([1, 2])
    with col1:
        z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff")
        y_diff = st.number_input("y", value=1.0, key="y_diff")
        z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff")
        z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff")
        
        diff_method_type = st.radio(
            "Boundary Calculation Method",
            ["Eigenvalue Method", "Discriminant Method"],
            index=0,
            key="diff_method_type"
        )
        
        with st.expander("Resolution Settings", expanded=False):
            if diff_method_type == "Eigenvalue Method":
                beta_steps_diff = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, 
                                         key="beta_steps_diff_eigen")
                diff_n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, 
                                        step=100, key="diff_n_samples")
                diff_seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1,
                                     key="diff_seeds")
            else:
                beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, 
                                         key="beta_steps_diff")
                z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, 
                                      step=1000, key="z_steps_diff")
        
        # Add options for curve selection
        st.subheader("Curves to Analyze")
        analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
        analyze_high_y = st.checkbox("High y Expression", value=False)
        analyze_alt_low = st.checkbox("Low y Expression", value=False)

    if st.button("Compute Differentials", key="tab3_button"):
        with col2:
            use_eigenvalue_method_diff = (diff_method_type == "Eigenvalue Method")
            
            if use_eigenvalue_method_diff:
                betas_diff = np.linspace(0, 1, beta_steps_diff)
                st.info("Computing eigenvalue support boundaries. This may take a moment...")
                lower_vals, upper_vals = compute_eigenvalue_support_boundaries(
                    z_a_diff, y_diff, betas_diff, diff_n_samples, diff_seeds)
            else:
                betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(
                    z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
            
            # Create figure
            fig_diff = go.Figure()
            
            if analyze_upper_lower:
                diff_curve = upper_vals - lower_vals
                d1 = np.gradient(diff_curve, betas_diff)
                d2 = np.gradient(d1, betas_diff)
                
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines", 
                                name="Upper-Lower Difference", line=dict(color="magenta", width=2)))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", 
                                name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash')))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", 
                                name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot')))

            if analyze_high_y:
                high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff)
                d1 = np.gradient(high_y_curve, betas_diff)
                d2 = np.gradient(d1, betas_diff)
                
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines", 
                                name="High y", line=dict(color="green", width=2)))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", 
                                name="High y d/dβ", line=dict(color="green", dash='dash')))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", 
                                name="High y d²/dβ²", line=dict(color="green", dash='dot')))

            if analyze_alt_low:
                alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff)
                d1 = np.gradient(alt_low_curve, betas_diff)
                d2 = np.gradient(d1, betas_diff)
                
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines", 
                                name="Low y", line=dict(color="orange", width=2)))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", 
                                name="Low y d/dβ", line=dict(color="orange", dash='dash')))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", 
                                name="Low y d²/dβ²", line=dict(color="orange", dash='dot')))

            fig_diff.update_layout(
                title="Differential Analysis vs. β" + 
                      (" (Eigenvalue Method)" if use_eigenvalue_method_diff else " (Discriminant Method)"),
                xaxis_title="β",
                yaxis_title="Value",
                hovermode="x unified",
                showlegend=True,
                legend=dict(
                    yanchor="top",
                    y=0.99,
                    xanchor="left",
                    x=0.01
                )
            )
            st.plotly_chart(fig_diff, use_container_width=True)
            
            with st.expander("Curve Types", expanded=False):
                st.markdown("""
                - Solid lines: Original curves
                - Dashed lines: First derivatives (d/dβ)
                - Dotted lines: Second derivatives (d²/dβ²)
                """)