Spaces:
Running
Running
File size: 92,434 Bytes
dd5ca7d a76f82e 319d05d c6775fd a9973b7 42690e4 a9973b7 694915a a9973b7 80ed07e a9973b7 19ef319 80ed07e 6e36ad3 a9973b7 42690e4 a9973b7 42690e4 a9973b7 865bf97 a9973b7 c02def7 a9973b7 c6775fd a9973b7 c6775fd a9973b7 dd5ca7d a9973b7 dd5ca7d a9973b7 c6775fd a9973b7 694915a a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd 694915a c6775fd 694915a c6775fd 694915a c6775fd e14afd8 c6775fd e14afd8 c6775fd e0149a8 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd a9973b7 c6775fd 675a582 c6775fd 73bcec5 c6775fd a9973b7 c6775fd a9973b7 c6775fd 694915a c6775fd 73bcec5 c6775fd 73bcec5 c6775fd 73bcec5 c6775fd a9973b7 c6775fd 694915a c6775fd c02def7 0357330 7a1ddff c02def7 dec1797 c02def7 dec1797 c02def7 19ef319 c02def7 19ef319 675a582 df770a8 c02def7 3c11a35 f1f1cff c02def7 df770a8 3c11a35 c02def7 99f6a90 f1f1cff 3c11a35 f1f1cff 675a582 5be6912 f1f1cff 7a1ddff a9973b7 e0149a8 a9973b7 19ef319 a9973b7 73bcec5 a9973b7 dec1797 a9973b7 3be6fe9 a9973b7 73bcec5 a9973b7 c02def7 a9973b7 dec1797 a9973b7 dec1797 a9973b7 73bcec5 a9973b7 7a1ddff 3994d34 a9973b7 3994d34 000e941 3994d34 000e941 3994d34 000e941 3994d34 000e941 3994d34 000e941 a9973b7 000e941 2690664 19ef319 a9973b7 19ef319 3994d34 19ef319 45cee47 19ef319 3994d34 000e941 a9973b7 19ef319 000e941 3994d34 000e941 a9973b7 000e941 3994d34 000e941 3994d34 000e941 3994d34 19ef319 3994d34 19ef319 3994d34 19ef319 3994d34 19ef319 3994d34 19ef319 45cee47 a9973b7 45cee47 3994d34 000e941 a9973b7 45cee47 000e941 3994d34 000e941 a9973b7 000e941 45cee47 3994d34 000e941 3994d34 000e941 3994d34 45cee47 3994d34 45cee47 3994d34 45cee47 3994d34 45cee47 3994d34 45cee47 3994d34 45cee47 3994d34 45cee47 a9973b7 45cee47 a9973b7 45cee47 a9973b7 45cee47 7a1ddff a9973b7 3994d34 a9973b7 3994d34 42690e4 a9973b7 675a582 a9973b7 45cee47 a9973b7 694915a a9973b7 694915a a9973b7 694915a a9973b7 694915a a9973b7 694915a a9973b7 45cee47 a9973b7 45cee47 a9973b7 45cee47 a9973b7 45cee47 a9973b7 694915a a9973b7 45cee47 a9973b7 45cee47 a9973b7 45cee47 a9973b7 45cee47 a9973b7 45cee47 a9973b7 45cee47 a9973b7 694915a a9973b7 694915a a9973b7 e0149a8 a9973b7 694915a a9973b7 e0149a8 a9973b7 e0149a8 a9973b7 e0149a8 a9973b7 e0149a8 a9973b7 e0149a8 a9973b7 c02def7 a9973b7 c02def7 a9973b7 694915a a9973b7 c02def7 a9973b7 c02def7 a9973b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 |
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve
from scipy.stats import gaussian_kde
import os
import tempfile
import subprocess
import sys
import importlib.util
# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
page_title="Cubic Root Analysis (C++ Accelerated)",
layout="wide",
initial_sidebar_state="collapsed"
)
# Check if C++ module is already compiled, otherwise compile it
cpp_compiled = False
def compile_cpp_module():
# Define C++ code as a string
cpp_code = """
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
#include <complex>
#include <vector>
#include <random>
#include <cmath>
#include <algorithm>
namespace py = pybind11;
using namespace Eigen;
// Fast discriminant computation function
double compute_discriminant_fast(double z, double beta, double z_a, double y) {
double a = z * z_a;
double b = z * z_a + z + z_a - z_a*y;
double c = z + z_a + 1 - y*(beta*z_a + 1 - beta);
double d = 1.0;
// Standard formula for cubic discriminant
return 18*a*b*c*d - 27*a*a*d*d + b*b*c*c - 2*b*b*b*d - 9*a*c*c*c;
}
// Batch computation of discriminant for array of z values
py::array_t<double> discriminant_array(double beta, double z_a, double y, py::array_t<double> z_values) {
auto z_buf = z_values.request();
auto result = py::array_t<double>(z_buf.size);
auto result_buf = result.request();
double* z_ptr = static_cast<double*>(z_buf.ptr);
double* result_ptr = static_cast<double*>(result_buf.ptr);
for (size_t i = 0; i < z_buf.size; i++) {
result_ptr[i] = compute_discriminant_fast(z_ptr[i], beta, z_a, y);
}
return result;
}
// Find zeros of discriminant function
std::tuple<py::array_t<double>, py::array_t<double>, py::array_t<double>>
find_discriminant_zeros(double z_a, double y, double z_min, double z_max, int beta_steps, int z_steps) {
// Create beta grid
auto betas = py::array_t<double>(beta_steps);
auto betas_buf = betas.request();
double* betas_ptr = static_cast<double*>(betas_buf.ptr);
for (int i = 0; i < beta_steps; i++) {
betas_ptr[i] = static_cast<double>(i) / (beta_steps - 1);
}
// Arrays for results
auto z_mins = py::array_t<double>(beta_steps);
auto z_maxs = py::array_t<double>(beta_steps);
auto z_mins_buf = z_mins.request();
auto z_maxs_buf = z_maxs.request();
double* z_mins_ptr = static_cast<double*>(z_mins_buf.ptr);
double* z_maxs_ptr = static_cast<double*>(z_maxs_buf.ptr);
// Apply condition for y
double y_effective = y > 1.0 ? y : 1.0/y;
// Create z grid
std::vector<double> z_grid(z_steps);
for (int i = 0; i < z_steps; i++) {
z_grid[i] = z_min + (z_max - z_min) * static_cast<double>(i) / (z_steps - 1);
}
// For each beta value, find min and max z where discriminant is zero
#pragma omp parallel for
for (int b_idx = 0; b_idx < beta_steps; b_idx++) {
double beta = betas_ptr[b_idx];
std::vector<double> roots_found;
// Calculate discriminant for all z values
std::vector<double> disc_vals(z_steps);
for (int i = 0; i < z_steps; i++) {
disc_vals[i] = compute_discriminant_fast(z_grid[i], beta, z_a, y_effective);
}
// Find sign changes (zeros of discriminant)
for (int i = 0; i < z_steps - 1; i++) {
double f1 = disc_vals[i];
double f2 = disc_vals[i+1];
if (std::isnan(f1) || std::isnan(f2)) {
continue;
}
if (f1 == 0.0) {
roots_found.push_back(z_grid[i]);
} else if (f2 == 0.0) {
roots_found.push_back(z_grid[i+1]);
} else if (f1 * f2 < 0) {
// Binary search for more accurate root
double zl = z_grid[i], zr = z_grid[i+1];
for (int j = 0; j < 50; j++) {
double mid = 0.5 * (zl + zr);
double fm = compute_discriminant_fast(mid, beta, z_a, y_effective);
if (fm == 0) {
zl = zr = mid;
break;
}
if ((fm > 0 && f1 > 0) || (fm < 0 && f1 < 0)) {
zl = mid;
f1 = fm;
} else {
zr = mid;
f2 = fm;
}
}
roots_found.push_back(0.5 * (zl + zr));
}
}
// Store min and max roots if any found
if (roots_found.empty()) {
z_mins_ptr[b_idx] = std::numeric_limits<double>::quiet_NaN();
z_maxs_ptr[b_idx] = std::numeric_limits<double>::quiet_NaN();
} else {
double min_root = *std::min_element(roots_found.begin(), roots_found.end());
double max_root = *std::max_element(roots_found.begin(), roots_found.end());
z_mins_ptr[b_idx] = min_root;
z_maxs_ptr[b_idx] = max_root;
}
}
return std::make_tuple(betas, z_mins, z_maxs);
}
// Compute eigenvalue support boundaries
std::tuple<py::array_t<double>, py::array_t<double>>
compute_eigenvalue_boundaries(double z_a, double y, py::array_t<double> beta_values, int n_samples, int seeds) {
auto beta_buf = beta_values.request();
int beta_steps = beta_buf.size;
// Results arrays
auto min_eigenvalues = py::array_t<double>(beta_steps);
auto max_eigenvalues = py::array_t<double>(beta_steps);
auto min_buf = min_eigenvalues.request();
auto max_buf = max_eigenvalues.request();
double* min_ptr = static_cast<double*>(min_buf.ptr);
double* max_ptr = static_cast<double*>(max_buf.ptr);
double* beta_ptr = static_cast<double*>(beta_buf.ptr);
// Apply condition for y
double y_effective = y > 1.0 ? y : 1.0/y;
// Compute eigenvalues for each beta value
#pragma omp parallel for
for (int i = 0; i < beta_steps; i++) {
double beta = beta_ptr[i];
std::vector<double> min_vals;
std::vector<double> max_vals;
// Run multiple trials with different seeds
for (int seed = 0; seed < seeds; seed++) {
// Set random seed
std::mt19937 gen(seed * 100 + i);
std::normal_distribution<double> normal_dist(0.0, 1.0);
// Compute dimension p based on aspect ratio y
int p = static_cast<int>(y_effective * n_samples);
// Constructing T_n (Population / Shape Matrix)
int k = static_cast<int>(std::floor(beta * p));
// Create diagonal entries
std::vector<double> diag_entries(p);
std::fill_n(diag_entries.begin(), k, z_a);
std::fill_n(diag_entries.begin() + k, p - k, 1.0);
// Shuffle the diagonal entries
std::shuffle(diag_entries.begin(), diag_entries.end(), gen);
// Create T_n matrix
MatrixXd T_n = MatrixXd::Zero(p, p);
for (int j = 0; j < p; j++) {
T_n(j, j) = diag_entries[j];
}
// Generate random data matrix X with standard normal entries
MatrixXd X(p, n_samples);
for (int r = 0; r < p; r++) {
for (int c = 0; c < n_samples; c++) {
X(r, c) = normal_dist(gen);
}
}
// Compute sample covariance matrix S_n = (1/n) * XX^T
MatrixXd S_n = (1.0 / n_samples) * (X * X.transpose());
// Compute B_n = S_n T_n
MatrixXd B_n = S_n * T_n;
// Compute eigenvalues
SelfAdjointEigenSolver<MatrixXd> solver(B_n);
VectorXd eigenvalues = solver.eigenvalues();
// Store min and max eigenvalues
min_vals.push_back(eigenvalues.minCoeff());
max_vals.push_back(eigenvalues.maxCoeff());
}
// Compute averages
double min_avg = 0.0, max_avg = 0.0;
for (double val : min_vals) min_avg += val;
for (double val : max_vals) max_avg += val;
min_ptr[i] = min_avg / seeds;
max_ptr[i] = max_avg / seeds;
}
return std::make_tuple(min_eigenvalues, max_eigenvalues);
}
// Compute cubic roots using fast C++ implementation
py::array_t<std::complex<double>> compute_cubic_roots_cpp(double z, double beta, double z_a, double y) {
// Apply the condition for y
double y_effective = y > 1.0 ? y : 1.0/y;
// Coefficients in the form as³ + bs² + cs + d = 0
double a = z * z_a;
double b = z * z_a + z + z_a - z_a*y_effective;
double c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta);
double d = 1.0;
// Handle special cases
if (std::abs(a) < 1e-10) {
// Create result array
auto result = py::array_t<std::complex<double>>(3);
auto buf = result.request();
std::complex<double>* ptr = static_cast<std::complex<double>*>(buf.ptr);
if (std::abs(b) < 1e-10) { // Linear case
ptr[0] = std::complex<double>(-d/c, 0.0);
ptr[1] = std::complex<double>(0.0, 0.0);
ptr[2] = std::complex<double>(0.0, 0.0);
} else { // Quadratic case
double discriminant = c*c - 4*b*d;
if (discriminant >= 0) {
double sqrt_disc = std::sqrt(discriminant);
ptr[0] = std::complex<double>((-c + sqrt_disc) / (2*b), 0.0);
ptr[1] = std::complex<double>((-c - sqrt_disc) / (2*b), 0.0);
} else {
double sqrt_disc = std::sqrt(-discriminant);
ptr[0] = std::complex<double>(-c/(2*b), sqrt_disc/(2*b));
ptr[1] = std::complex<double>(-c/(2*b), -sqrt_disc/(2*b));
}
ptr[2] = std::complex<double>(0.0, 0.0);
}
return result;
}
// For better numerical stability, normalize the equation: x³ + px² + qx + r = 0
double p = b / a;
double q = c / a;
double r = d / a;
// Depressed cubic: t³ + pt + q = 0 where x = t - p/3
double p_prime = q - p*p/3.0;
double q_prime = r - p*q/3.0 + 2.0*p*p*p/27.0;
// Compute discriminant
double discriminant = 4.0*p_prime*p_prime*p_prime/27.0 + q_prime*q_prime;
// Create result array
auto result = py::array_t<std::complex<double>>(3);
auto buf = result.request();
std::complex<double>* ptr = static_cast<std::complex<double>*>(buf.ptr);
// Calculate roots based on discriminant
if (std::abs(discriminant) < 1e-10) { // Discriminant ≈ 0
if (std::abs(q_prime) < 1e-10) { // Triple root
ptr[0] = ptr[1] = ptr[2] = std::complex<double>(-p/3.0, 0.0);
} else { // One simple, one double root
double u = std::cbrt(-q_prime/2.0);
ptr[0] = std::complex<double>(2*u - p/3.0, 0.0);
ptr[1] = ptr[2] = std::complex<double>(-u - p/3.0, 0.0);
}
} else if (discriminant > 0) { // One real, two complex conjugate roots
double sqrt_disc = std::sqrt(discriminant);
std::complex<double> u = std::pow(std::complex<double>(-q_prime/2.0 + sqrt_disc/2.0, 0.0), 1.0/3.0);
std::complex<double> v = std::pow(std::complex<double>(-q_prime/2.0 - sqrt_disc/2.0, 0.0), 1.0/3.0);
ptr[0] = std::complex<double>(std::real(u + v) - p/3.0, 0.0);
std::complex<double> omega(-0.5, 0.866025403784439); // -1/2 + i*√3/2
std::complex<double> omega2(-0.5, -0.866025403784439); // -1/2 - i*√3/2
ptr[1] = omega * u + omega2 * v - std::complex<double>(p/3.0, 0.0);
ptr[2] = omega2 * u + omega * v - std::complex<double>(p/3.0, 0.0);
} else { // Three distinct real roots
double sqrt_disc = std::sqrt(-discriminant);
double theta = std::atan2(sqrt_disc, -2.0*q_prime);
double r_prime = std::pow(q_prime*q_prime + discriminant/4.0, 1.0/6.0);
ptr[0] = std::complex<double>(2.0*r_prime*std::cos(theta/3.0) - p/3.0, 0.0);
ptr[1] = std::complex<double>(2.0*r_prime*std::cos((theta + 2.0*M_PI)/3.0) - p/3.0, 0.0);
ptr[2] = std::complex<double>(2.0*r_prime*std::cos((theta + 4.0*M_PI)/3.0) - p/3.0, 0.0);
}
return result;
}
// Compute high y curve
py::array_t<double> compute_high_y_curve(py::array_t<double> betas, double z_a, double y) {
auto beta_buf = betas.request();
auto result = py::array_t<double>(beta_buf.size);
auto result_buf = result.request();
double* beta_ptr = static_cast<double*>(beta_buf.ptr);
double* result_ptr = static_cast<double*>(result_buf.ptr);
// Apply the condition for y
double y_effective = y > 1.0 ? y : 1.0/y;
double a = z_a;
double denominator = 1.0 - 2.0*a;
#pragma omp parallel for
for (size_t i = 0; i < beta_buf.size; i++) {
if (std::abs(denominator) < 1e-10) {
result_ptr[i] = std::numeric_limits<double>::quiet_NaN();
continue;
}
double beta = beta_ptr[i];
double numerator = -4.0*a*(a-1.0)*y_effective*beta - 2.0*a*y_effective - 2.0*a*(2.0*a-1.0);
result_ptr[i] = numerator/denominator;
}
return result;
}
// Compute alternate low expression
py::array_t<double> compute_alternate_low_expr(py::array_t<double> betas, double z_a, double y) {
auto beta_buf = betas.request();
auto result = py::array_t<double>(beta_buf.size);
auto result_buf = result.request();
double* beta_ptr = static_cast<double*>(beta_buf.ptr);
double* result_ptr = static_cast<double*>(result_buf.ptr);
// Apply the condition for y
double y_effective = y > 1.0 ? y : 1.0/y;
#pragma omp parallel for
for (size_t i = 0; i < beta_buf.size; i++) {
double beta = beta_ptr[i];
result_ptr[i] = (z_a * y_effective * beta * (z_a - 1.0) - 2.0*z_a*(1.0 - y_effective) - 2.0*z_a*z_a) / (2.0 + 2.0*z_a);
}
return result;
}
// Compute max k expression
py::array_t<double> compute_max_k_expression(py::array_t<double> betas, double z_a, double y, int k_samples=1000) {
auto beta_buf = betas.request();
auto result = py::array_t<double>(beta_buf.size);
auto result_buf = result.request();
double* beta_ptr = static_cast<double*>(beta_buf.ptr);
double* result_ptr = static_cast<double*>(result_buf.ptr);
// Apply the condition for y
double y_effective = y > 1.0 ? y : 1.0/y;
double a = z_a;
// Sample k values on a logarithmic scale
std::vector<double> k_values(k_samples);
for (int j = 0; j < k_samples; j++) {
k_values[j] = std::pow(10.0, -3.0 + 6.0 * static_cast<double>(j) / (k_samples - 1));
}
#pragma omp parallel for
for (size_t i = 0; i < beta_buf.size; i++) {
double beta = beta_ptr[i];
std::vector<double> values(k_samples);
// Compute expression value for each k
for (int j = 0; j < k_samples; j++) {
double k = k_values[j];
double numerator = y_effective*beta*(a-1.0)*k + (a*k+1.0)*((y_effective-1.0)*k-1.0);
double denominator = (a*k+1.0)*(k*k+k);
if (std::abs(denominator) < 1e-10) {
values[j] = std::numeric_limits<double>::quiet_NaN();
} else {
values[j] = numerator/denominator;
}
}
// Find maximum value (excluding NaNs)
double max_val = -std::numeric_limits<double>::infinity();
bool has_valid = false;
for (double val : values) {
if (!std::isnan(val)) {
max_val = std::max(max_val, val);
has_valid = true;
}
}
result_ptr[i] = has_valid ? max_val : std::numeric_limits<double>::quiet_NaN();
}
return result;
}
// Compute min t expression
py::array_t<double> compute_min_t_expression(py::array_t<double> betas, double z_a, double y, int t_samples=1000) {
auto beta_buf = betas.request();
auto result = py::array_t<double>(beta_buf.size);
auto result_buf = result.request();
double* beta_ptr = static_cast<double*>(beta_buf.ptr);
double* result_ptr = static_cast<double*>(result_buf.ptr);
// Apply the condition for y
double y_effective = y > 1.0 ? y : 1.0/y;
double a = z_a;
if (a <= 0) {
for (size_t i = 0; i < beta_buf.size; i++) {
result_ptr[i] = std::numeric_limits<double>::quiet_NaN();
}
return result;
}
double lower_bound = -1.0/a + 1e-10; // Avoid division by zero
#pragma omp parallel for
for (size_t i = 0; i < beta_buf.size; i++) {
double beta = beta_ptr[i];
// Sample t values
std::vector<double> t_values(t_samples);
for (int j = 0; j < t_samples; j++) {
t_values[j] = lower_bound + (-1e-10 - lower_bound) * static_cast<double>(j) / (t_samples - 1);
}
std::vector<double> values(t_samples);
// Compute expression value for each t
for (int j = 0; j < t_samples; j++) {
double t = t_values[j];
double numerator = y_effective*beta*(a-1.0)*t + (a*t+1.0)*((y_effective-1.0)*t-1.0);
double denominator = (a*t+1.0)*(t*t+t);
if (std::abs(denominator) < 1e-10) {
values[j] = std::numeric_limits<double>::quiet_NaN();
} else {
values[j] = numerator/denominator;
}
}
// Find minimum value (excluding NaNs)
double min_val = std::numeric_limits<double>::infinity();
bool has_valid = false;
for (double val : values) {
if (!std::isnan(val)) {
min_val = std::min(min_val, val);
has_valid = true;
}
}
result_ptr[i] = has_valid ? min_val : std::numeric_limits<double>::quiet_NaN();
}
return result;
}
// Generate eigenvalue distribution
std::tuple<py::array_t<double>, py::array_t<double>>
generate_eigenvalue_distribution_cpp(double beta, double y, double z_a, int n, int seed) {
// Apply the condition for y
double y_effective = y > 1.0 ? y : 1.0/y;
// Set random seed
std::mt19937 gen(seed);
std::normal_distribution<double> normal_dist(0.0, 1.0);
// Compute dimension p based on aspect ratio y
int p = static_cast<int>(y_effective * n);
// Constructing T_n (Population / Shape Matrix)
int k = static_cast<int>(std::floor(beta * p));
// Create diagonal entries
std::vector<double> diag_entries(p);
std::fill_n(diag_entries.begin(), k, z_a);
std::fill_n(diag_entries.begin() + k, p - k, 1.0);
// Shuffle the diagonal entries
std::shuffle(diag_entries.begin(), diag_entries.end(), gen);
// Create T_n matrix
MatrixXd T_n = MatrixXd::Zero(p, p);
for (int i = 0; i < p; i++) {
T_n(i, i) = diag_entries[i];
}
// Generate random data matrix X with standard normal entries
MatrixXd X(p, n);
for (int r = 0; r < p; r++) {
for (int c = 0; c < n; c++) {
X(r, c) = normal_dist(gen);
}
}
// Compute sample covariance matrix S_n = (1/n) * XX^T
MatrixXd S_n = (1.0 / n) * (X * X.transpose());
// Compute B_n = S_n T_n
MatrixXd B_n = S_n * T_n;
// Compute eigenvalues
SelfAdjointEigenSolver<MatrixXd> solver(B_n);
VectorXd eigenvalues = solver.eigenvalues();
// Return eigenvalues as numpy array
auto result = py::array_t<double>(p);
auto result_buf = result.request();
double* result_ptr = static_cast<double*>(result_buf.ptr);
for (int i = 0; i < p; i++) {
result_ptr[i] = eigenvalues(i);
}
// Create x grid for KDE estimation (done in Python)
auto x_grid = py::array_t<double>(500);
auto x_grid_buf = x_grid.request();
double* x_grid_ptr = static_cast<double*>(x_grid_buf.ptr);
double min_eig = eigenvalues.minCoeff();
double max_eig = eigenvalues.maxCoeff();
for (int i = 0; i < 500; i++) {
x_grid_ptr[i] = min_eig + (max_eig - min_eig) * static_cast<double>(i) / 499.0;
}
return std::make_tuple(result, x_grid);
}
// Generate phase diagram
py::array_t<int> generate_phase_diagram_cpp(
double z_a, double y, double beta_min, double beta_max,
double z_min, double z_max, int beta_steps, int z_steps) {
// Apply the condition for y
double y_effective = y > 1.0 ? y : 1.0/y;
// Create result array
auto result = py::array_t<int>({z_steps, beta_steps});
auto result_buf = result.request();
int* result_ptr = static_cast<int*>(result_buf.ptr);
// Create beta and z grids
std::vector<double> beta_values(beta_steps);
std::vector<double> z_values(z_steps);
for (int i = 0; i < beta_steps; i++) {
beta_values[i] = beta_min + (beta_max - beta_min) * static_cast<double>(i) / (beta_steps - 1);
}
for (int i = 0; i < z_steps; i++) {
z_values[i] = z_min + (z_max - z_min) * static_cast<double>(i) / (z_steps - 1);
}
// Analyze roots for each (z, beta) point
#pragma omp parallel for collapse(2)
for (int i = 0; i < z_steps; i++) {
for (int j = 0; j < beta_steps; j++) {
double z = z_values[i];
double beta = beta_values[j];
// Coefficients for cubic equation
double a = z * z_a;
double b = z * z_a + z + z_a - z_a*y_effective;
double c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta);
double d = 1.0;
// Calculate discriminant
double discriminant = 18*a*b*c*d - 27*a*a*d*d + b*b*c*c - 2*b*b*b*d - 9*a*c*c*c;
// Set result based on sign of discriminant
// 1 for all real roots (discriminant > 0), -1 for complex roots (discriminant < 0)
result_ptr[i * beta_steps + j] = (discriminant > 0) ? 1 : -1;
}
}
return result;
}
PYBIND11_MODULE(cubic_cpp, m) {
m.doc() = "C++ accelerated cubic root analysis";
// Expose all the C++ functions to Python
m.def("discriminant_array", &discriminant_array, "Compute cubic discriminant for array of z values");
m.def("find_discriminant_zeros", &find_discriminant_zeros, "Find zeros of the discriminant function");
m.def("compute_eigenvalue_boundaries", &compute_eigenvalue_boundaries, "Compute eigenvalue boundaries");
m.def("compute_cubic_roots_cpp", &compute_cubic_roots_cpp, "Compute cubic roots");
m.def("compute_high_y_curve", &compute_high_y_curve, "Compute high y curve");
m.def("compute_alternate_low_expr", &compute_alternate_low_expr, "Compute alternate low expression");
m.def("compute_max_k_expression", &compute_max_k_expression, "Compute max k expression");
m.def("compute_min_t_expression", &compute_min_t_expression, "Compute min t expression");
m.def("generate_eigenvalue_distribution_cpp", &generate_eigenvalue_distribution_cpp, "Generate eigenvalue distribution");
m.def("generate_phase_diagram_cpp", &generate_phase_diagram_cpp, "Generate phase diagram");
}
"""
# Create a temporary directory to compile the C++ code
with tempfile.TemporaryDirectory() as tmpdirname:
# Write C++ code to file
with open(os.path.join(tmpdirname, "cubic_cpp.cpp"), "w") as f:
f.write(cpp_code)
# Write setup.py for compiling with pybind11
setup_py = """
from setuptools import setup, Extension
from pybind11.setup_helpers import Pybind11Extension, build_ext
ext_modules = [
Pybind11Extension(
"cubic_cpp",
["cubic_cpp.cpp"],
include_dirs=["/usr/include/eigen3"],
extra_compile_args=["-fopenmp", "-O3", "-march=native", "-ffast-math"],
extra_link_args=["-fopenmp"],
cxx_std=17,
),
]
setup(
name="cubic_cpp",
ext_modules=ext_modules,
cmdclass={"build_ext": build_ext},
)
"""
with open(os.path.join(tmpdirname, "setup.py"), "w") as f:
f.write(setup_py)
# Compile the module
st.info("Compiling C++ module... This may take a moment.")
try:
result = subprocess.run(
[sys.executable, "setup.py", "build_ext", "--inplace"],
cwd=tmpdirname,
capture_output=True,
text=True,
check=True
)
# Get the compiled module path
module_path = None
for file in os.listdir(tmpdirname):
if file.startswith("cubic_cpp") and file.endswith(".so"):
module_path = os.path.join(tmpdirname, file)
break
if not module_path:
st.error("Failed to find compiled module.")
st.code(result.stdout)
st.code(result.stderr)
return False
# Import the module
spec = importlib.util.spec_from_file_location("cubic_cpp", module_path)
cubic_cpp = importlib.util.module_from_spec(spec)
spec.loader.exec_module(cubic_cpp)
# Make functions available globally
globals()["discriminant_array"] = cubic_cpp.discriminant_array
globals()["find_discriminant_zeros"] = cubic_cpp.find_discriminant_zeros
globals()["compute_eigenvalue_boundaries"] = cubic_cpp.compute_eigenvalue_boundaries
globals()["compute_cubic_roots_cpp"] = cubic_cpp.compute_cubic_roots_cpp
globals()["compute_high_y_curve"] = cubic_cpp.compute_high_y_curve
globals()["compute_alternate_low_expr"] = cubic_cpp.compute_alternate_low_expr
globals()["compute_max_k_expression"] = cubic_cpp.compute_max_k_expression
globals()["compute_min_t_expression"] = cubic_cpp.compute_min_t_expression
globals()["generate_eigenvalue_distribution_cpp"] = cubic_cpp.generate_eigenvalue_distribution_cpp
globals()["generate_phase_diagram_cpp"] = cubic_cpp.generate_phase_diagram_cpp
st.success("C++ module compiled successfully!")
return True
except subprocess.CalledProcessError as e:
st.error(f"Compilation failed: {e}")
st.code(e.stdout)
st.code(e.stderr)
return False
# Try to compile the C++ module
cpp_compiled = compile_cpp_module()
# Python fallback functions if C++ compilation failed
def add_sqrt_support(expr_str):
"""Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
return expr_str.replace('sqrt(', 'sp.sqrt(')
@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
"""
Scan z in [z_min, z_max] for sign changes in the discriminant,
and return approximated roots (where the discriminant is zero).
"""
# Apply the condition for y
y_effective = y if y > 1 else 1/y
# Symbolic variables for the cubic discriminant
z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
# Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
a_sym = z_sym * z_a_sym
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
d_sym = 1
# Symbolic expression for the cubic discriminant
Delta_expr = (
((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2
+ (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
)
# Fast numeric function for the discriminant
discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")
z_grid = np.linspace(z_min, z_max, steps)
disc_vals = discriminant_func(z_grid, beta, z_a, y_effective)
roots_found = []
for i in range(len(z_grid) - 1):
f1, f2 = disc_vals[i], disc_vals[i+1]
if np.isnan(f1) or np.isnan(f2):
continue
if f1 == 0.0:
roots_found.append(z_grid[i])
elif f2 == 0.0:
roots_found.append(z_grid[i+1])
elif f1 * f2 < 0:
zl, zr = z_grid[i], z_grid[i+1]
for _ in range(50):
mid = 0.5 * (zl + zr)
fm = discriminant_func(mid, beta, z_a, y_effective)
if fm == 0:
zl = zr = mid
break
if np.sign(fm) == np.sign(f1):
zl, f1 = mid, fm
else:
zr, f2 = mid, fm
roots_found.append(0.5 * (zl + zr))
return np.array(roots_found)
@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
"""
Python fallback. For each beta in [0,1] (with beta_steps points), find the minimum and maximum z
for which the discriminant is zero.
Returns: betas, lower z*(β) values, and upper z*(β) values.
"""
if cpp_compiled:
return find_discriminant_zeros(z_a, y, z_min, z_max, beta_steps, z_steps)
betas = np.linspace(0, 1, beta_steps)
z_min_values = []
z_max_values = []
for b in betas:
roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
if len(roots) == 0:
z_min_values.append(np.nan)
z_max_values.append(np.nan)
else:
z_min_values.append(np.min(roots))
z_max_values.append(np.max(roots))
return betas, np.array(z_min_values), np.array(z_max_values)
@st.cache_data
def compute_eigenvalue_support_boundaries(z_a, y, beta_values, n_samples=100, seeds=5):
"""
Python fallback. Compute the support boundaries of the eigenvalue distribution by directly
finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values.
"""
if cpp_compiled:
return compute_eigenvalue_boundaries(z_a, y, beta_values, n_samples, seeds)
# Apply the condition for y
y_effective = y if y > 1 else 1/y
min_eigenvalues = np.zeros_like(beta_values)
max_eigenvalues = np.zeros_like(beta_values)
# Use a progress bar for Streamlit
progress_bar = st.progress(0)
status_text = st.empty()
for i, beta in enumerate(beta_values):
# Update progress
progress_bar.progress((i + 1) / len(beta_values))
status_text.text(f"Processing β = {beta:.2f} ({i+1}/{len(beta_values)})")
min_vals = []
max_vals = []
# Run multiple trials with different seeds for more stable results
for seed in range(seeds):
# Set random seed
np.random.seed(seed * 100 + i)
# Compute dimension p based on aspect ratio y
n = n_samples
p = int(y_effective * n)
# Constructing T_n (Population / Shape Matrix)
k = int(np.floor(beta * p))
diag_entries = np.concatenate([
np.full(k, z_a),
np.full(p - k, 1.0)
])
np.random.shuffle(diag_entries)
T_n = np.diag(diag_entries)
# Generate the data matrix X with i.i.d. standard normal entries
X = np.random.randn(p, n)
# Compute the sample covariance matrix S_n = (1/n) * XX^T
S_n = (1 / n) * (X @ X.T)
# Compute B_n = S_n T_n
B_n = S_n @ T_n
# Compute eigenvalues of B_n
eigenvalues = np.linalg.eigvalsh(B_n)
# Find minimum and maximum eigenvalues
min_vals.append(np.min(eigenvalues))
max_vals.append(np.max(eigenvalues))
# Average over seeds for stability
min_eigenvalues[i] = np.mean(min_vals)
max_eigenvalues[i] = np.mean(max_vals)
# Clear progress indicators
progress_bar.empty()
status_text.empty()
return min_eigenvalues, max_eigenvalues
@st.cache_data
def compute_high_y_curve(betas, z_a, y):
"""
Compute the "High y Expression" curve.
"""
if cpp_compiled:
return compute_high_y_curve(betas, z_a, y)
# Apply the condition for y
y_effective = y if y > 1 else 1/y
a = z_a
betas = np.array(betas)
denominator = 1 - 2*a
if denominator == 0:
return np.full_like(betas, np.nan)
numerator = -4*a*(a-1)*y_effective*betas - 2*a*y_effective - 2*a*(2*a-1)
return numerator/denominator
@st.cache_data
def compute_alternate_low_expr(betas, z_a, y):
"""
Compute the alternate low expression.
"""
if cpp_compiled:
return compute_alternate_low_expr(betas, z_a, y)
# Apply the condition for y
y_effective = y if y > 1 else 1/y
betas = np.array(betas)
return (z_a * y_effective * betas * (z_a - 1) - 2*z_a*(1 - y_effective) - 2*z_a**2) / (2 + 2*z_a)
@st.cache_data
def compute_max_k_expression(betas, z_a, y, k_samples=1000):
"""
Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k))
"""
if cpp_compiled:
return compute_max_k_expression(betas, z_a, y, k_samples)
# Apply the condition for y
y_effective = y if y > 1 else 1/y
a = z_a
# Sample k values on a logarithmic scale
k_values = np.logspace(-3, 3, k_samples)
max_vals = np.zeros_like(betas)
for i, beta in enumerate(betas):
values = np.zeros_like(k_values)
for j, k in enumerate(k_values):
numerator = y_effective*beta*(a-1)*k + (a*k+1)*((y_effective-1)*k-1)
denominator = (a*k+1)*(k**2+k)
if abs(denominator) < 1e-10:
values[j] = np.nan
else:
values[j] = numerator/denominator
valid_indices = ~np.isnan(values)
if np.any(valid_indices):
max_vals[i] = np.max(values[valid_indices])
else:
max_vals[i] = np.nan
return max_vals
@st.cache_data
def compute_min_t_expression(betas, z_a, y, t_samples=1000):
"""
Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t))
"""
if cpp_compiled:
return compute_min_t_expression(betas, z_a, y, t_samples)
# Apply the condition for y
y_effective = y if y > 1 else 1/y
a = z_a
if a <= 0:
return np.full_like(betas, np.nan)
lower_bound = -1/a + 1e-10 # Avoid division by zero
t_values = np.linspace(lower_bound, -1e-10, t_samples)
min_vals = np.zeros_like(betas)
for i, beta in enumerate(betas):
values = np.zeros_like(t_values)
for j, t in enumerate(t_values):
numerator = y_effective*beta*(a-1)*t + (a*t+1)*((y_effective-1)*t-1)
denominator = (a*t+1)*(t**2+t)
if abs(denominator) < 1e-10:
values[j] = np.nan
else:
values[j] = numerator/denominator
valid_indices = ~np.isnan(values)
if np.any(valid_indices):
min_vals[i] = np.min(values[valid_indices])
else:
min_vals[i] = np.nan
return min_vals
@st.cache_data
def compute_derivatives(curve, betas):
"""Compute first and second derivatives of a curve"""
d1 = np.gradient(curve, betas)
d2 = np.gradient(d1, betas)
return d1, d2
def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None):
"""Compute derivatives for all curves"""
derivatives = {}
# Upper z*(β)
derivatives['upper'] = compute_derivatives(z_maxs, betas)
# Lower z*(β)
derivatives['lower'] = compute_derivatives(z_mins, betas)
# Low y Expression (only if provided)
if low_y_curve is not None:
derivatives['low_y'] = compute_derivatives(low_y_curve, betas)
# High y Expression
if high_y_curve is not None:
derivatives['high_y'] = compute_derivatives(high_y_curve, betas)
# Alternate Low Expression
if alt_low_expr is not None:
derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas)
# Custom Expression 1 (if provided)
if custom_curve1 is not None:
derivatives['custom1'] = compute_derivatives(custom_curve1, betas)
# Custom Expression 2 (if provided)
if custom_curve2 is not None:
derivatives['custom2'] = compute_derivatives(custom_curve2, betas)
return derivatives
def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True):
"""
Compute custom curve. If is_s_based=True, compute using s substitution.
Otherwise, compute direct z(β) expression.
"""
# Apply the condition for y
y_effective = y if y > 1 else 1/y
beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True)
local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp}
try:
# Add sqrt support
s_num_expr = add_sqrt_support(s_num_expr)
s_denom_expr = add_sqrt_support(s_denom_expr)
num_expr = sp.sympify(s_num_expr, locals=local_dict)
denom_expr = sp.sympify(s_denom_expr, locals=local_dict)
if is_s_based:
# Compute s and substitute into main expression
s_expr = num_expr / denom_expr
a = z_a_sym
numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1)
denominator = (a*s_expr+1)*(s_expr**2 + s_expr)
final_expr = numerator/denominator
else:
# Direct z(β) expression
final_expr = num_expr / denom_expr
except sp.SympifyError as e:
st.error(f"Error parsing expressions: {e}")
return np.full_like(betas, np.nan)
final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"])
with np.errstate(divide='ignore', invalid='ignore'):
result = final_func(betas, z_a, y_effective)
if np.isscalar(result):
result = np.full_like(betas, result)
return result
def compute_cubic_roots(z, beta, z_a, y):
"""
Compute the roots of the cubic equation for given parameters, using C++ if available.
"""
if cpp_compiled:
roots = compute_cubic_roots_cpp(z, beta, z_a, y)
return roots
# Apply the condition for y
y_effective = y if y > 1 else 1/y
# Import SymPy functions
from sympy import symbols, solve, im, re, N, Poly
# Create a symbolic variable for the equation
s = symbols('s')
# Coefficients in the form as^3 + bs^2 + cs + d = 0
a = z * z_a
b = z * z_a + z + z_a - z_a*y_effective
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
d = 1
# Handle special cases
if abs(a) < 1e-10:
if abs(b) < 1e-10: # Linear case
roots = np.array([-d/c, 0, 0], dtype=complex)
else: # Quadratic case
quad_roots = np.roots([b, c, d])
roots = np.append(quad_roots, 0).astype(complex)
return roots
try:
# Create the cubic polynomial
cubic_eq = Poly(a*s**3 + b*s**2 + c*s + d, s)
# Solve the equation symbolically
symbolic_roots = solve(cubic_eq, s)
# Convert symbolic roots to complex numbers with high precision
numerical_roots = []
for root in symbolic_roots:
# Use SymPy's N function with high precision
numerical_root = complex(N(root, 30))
numerical_roots.append(numerical_root)
# If we got fewer than 3 roots (due to multiplicity), pad with zeros
while len(numerical_roots) < 3:
numerical_roots.append(0j)
return np.array(numerical_roots, dtype=complex)
except Exception as e:
# Fallback to numpy if SymPy has issues
coeffs = [a, b, c, d]
return np.roots(coeffs)
def track_roots_consistently(z_values, all_roots):
"""
Ensure consistent tracking of roots across z values by minimizing discontinuity.
"""
n_points = len(z_values)
n_roots = all_roots[0].shape[0]
tracked_roots = np.zeros((n_points, n_roots), dtype=complex)
tracked_roots[0] = all_roots[0]
for i in range(1, n_points):
prev_roots = tracked_roots[i-1]
current_roots = all_roots[i]
# For each previous root, find the closest current root
assigned = np.zeros(n_roots, dtype=bool)
assignments = np.zeros(n_roots, dtype=int)
for j in range(n_roots):
distances = np.abs(current_roots - prev_roots[j])
# Find the closest unassigned root
while True:
best_idx = np.argmin(distances)
if not assigned[best_idx]:
assignments[j] = best_idx
assigned[best_idx] = True
break
else:
# Mark as infinite distance and try again
distances[best_idx] = np.inf
# Safety check if all are assigned (shouldn't happen)
if np.all(distances == np.inf):
assignments[j] = j # Default to same index
break
# Reorder current roots based on assignments
tracked_roots[i] = current_roots[assignments]
return tracked_roots
def generate_cubic_discriminant(z, beta, z_a, y_effective):
"""
Calculate the cubic discriminant using the standard formula.
For a cubic ax^3 + bx^2 + cx + d:
Δ = 18abcd - 27a^2d^2 + b^2c^2 - 2b^3d - 9ac^3
"""
a = z * z_a
b = z * z_a + z + z_a - z_a*y_effective
c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
d = 1
# Standard formula for cubic discriminant
discriminant = (18*a*b*c*d - 27*a**2*d**2 + b**2*c**2 - 2*b**3*d - 9*a*c**3)
return discriminant
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
"""
Generate Im(s) and Re(s) vs. z plots with improved accuracy.
"""
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None, None, None
# Apply the condition for y
y_effective = y if y > 1 else 1/y
z_points = np.linspace(z_min, z_max, n_points)
# Collect all roots first
all_roots = []
discriminants = []
# Progress indicator
progress_bar = st.progress(0)
status_text = st.empty()
for i, z in enumerate(z_points):
# Update progress
progress_bar.progress((i + 1) / n_points)
status_text.text(f"Computing roots for z = {z:.3f} ({i+1}/{n_points})")
# Calculate roots
roots = compute_cubic_roots(z, beta, z_a, y)
# Initial sorting to help with tracking
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
all_roots.append(roots)
# Calculate discriminant
disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
discriminants.append(disc)
# Clear progress indicators
progress_bar.empty()
status_text.empty()
all_roots = np.array(all_roots)
discriminants = np.array(discriminants)
# Track roots consistently across z values
tracked_roots = track_roots_consistently(z_points, all_roots)
# Extract imaginary and real parts
ims = np.imag(tracked_roots)
res = np.real(tracked_roots)
# Create figure for imaginary parts
fig_im = go.Figure()
for i in range(3):
fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
line=dict(width=2)))
# Add vertical lines at discriminant zero crossings
disc_zeros = []
for i in range(len(discriminants)-1):
if discriminants[i] * discriminants[i+1] <= 0: # Sign change
zero_pos = z_points[i] + (z_points[i+1] - z_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i])
disc_zeros.append(zero_pos)
fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")
# Create figure for real parts
fig_re = go.Figure()
for i in range(3):
fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
line=dict(width=2)))
# Add vertical lines at discriminant zero crossings
for zero_pos in disc_zeros:
fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
# Create discriminant plot
fig_disc = go.Figure()
fig_disc.add_trace(go.Scatter(x=z_points, y=discriminants, mode="lines",
name="Cubic Discriminant", line=dict(color="black", width=2)))
fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
fig_disc.update_layout(title=f"Cubic Discriminant vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="z", yaxis_title="Discriminant", hovermode="x unified")
return fig_im, fig_re, fig_disc
def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
"""
Generate Im(s) and Re(s) vs. β plots.
"""
if z_a <= 0 or y <= 0 or beta_min >= beta_max:
st.error("Invalid input parameters.")
return None, None, None
# Apply the condition for y
y_effective = y if y > 1 else 1/y
beta_points = np.linspace(beta_min, beta_max, n_points)
# Collect all roots first
all_roots = []
discriminants = []
# Progress indicator
progress_bar = st.progress(0)
status_text = st.empty()
for i, beta in enumerate(beta_points):
# Update progress
progress_bar.progress((i + 1) / n_points)
status_text.text(f"Computing roots for β = {beta:.3f} ({i+1}/{n_points})")
# Calculate roots
roots = compute_cubic_roots(z, beta, z_a, y)
# Initial sorting to help with tracking
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
all_roots.append(roots)
# Calculate discriminant
disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
discriminants.append(disc)
# Clear progress indicators
progress_bar.empty()
status_text.empty()
all_roots = np.array(all_roots)
discriminants = np.array(discriminants)
# Track roots consistently across beta values
tracked_roots = track_roots_consistently(beta_points, all_roots)
# Extract imaginary and real parts
ims = np.imag(tracked_roots)
res = np.real(tracked_roots)
# Create figure for imaginary parts
fig_im = go.Figure()
for i in range(3):
fig_im.add_trace(go.Scatter(x=beta_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
line=dict(width=2)))
# Add vertical lines at discriminant zero crossings
disc_zeros = []
for i in range(len(discriminants)-1):
if discriminants[i] * discriminants[i+1] <= 0: # Sign change
zero_pos = beta_points[i] + (beta_points[i+1] - beta_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i])
disc_zeros.append(zero_pos)
fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
fig_im.update_layout(title=f"Im{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="β", yaxis_title="Im{s}", hovermode="x unified")
# Create figure for real parts
fig_re = go.Figure()
for i in range(3):
fig_re.add_trace(go.Scatter(x=beta_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
line=dict(width=2)))
# Add vertical lines at discriminant zero crossings
for zero_pos in disc_zeros:
fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
fig_re.update_layout(title=f"Re{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="β", yaxis_title="Re{s}", hovermode="x unified")
# Create discriminant plot
fig_disc = go.Figure()
fig_disc.add_trace(go.Scatter(x=beta_points, y=discriminants, mode="lines",
name="Cubic Discriminant", line=dict(color="black", width=2)))
fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
fig_disc.update_layout(title=f"Cubic Discriminant vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="β", yaxis_title="Discriminant", hovermode="x unified")
return fig_im, fig_re, fig_disc
def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0,
beta_steps=100, z_steps=100):
"""
Generate a phase diagram showing regions of complex and real roots.
"""
if cpp_compiled:
phase_map = generate_phase_diagram_cpp(z_a, y, beta_min, beta_max, z_min, z_max, beta_steps, z_steps)
beta_values = np.linspace(beta_min, beta_max, beta_steps)
z_values = np.linspace(z_min, z_max, z_steps)
else:
# Apply the condition for y
y_effective = y if y > 1 else 1/y
beta_values = np.linspace(beta_min, beta_max, beta_steps)
z_values = np.linspace(z_min, z_max, z_steps)
# Initialize phase map
phase_map = np.zeros((z_steps, beta_steps))
# Progress tracking
progress_bar = st.progress(0)
status_text = st.empty()
for i, z in enumerate(z_values):
# Update progress
progress_bar.progress((i + 1) / len(z_values))
status_text.text(f"Analyzing phase at z = {z:.2f} ({i+1}/{len(z_values)})")
for j, beta in enumerate(beta_values):
roots = compute_cubic_roots(z, beta, z_a, y)
# Check if all roots are real (imaginary parts close to zero)
is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
phase_map[i, j] = 1 if is_all_real else -1
# Clear progress indicators
progress_bar.empty()
status_text.empty()
# Create heatmap
fig = go.Figure(data=go.Heatmap(
z=phase_map,
x=beta_values,
y=z_values,
colorscale=[[0, 'blue'], [0.5, 'white'], [1.0, 'red']],
zmin=-1,
zmax=1,
showscale=True,
colorbar=dict(
title="Root Type",
tickvals=[-1, 1],
ticktext=["Complex Roots", "All Real Roots"]
)
))
fig.update_layout(
title=f"Phase Diagram: Root Structure (y={y:.3f}, z_a={z_a:.3f})",
xaxis_title="β",
yaxis_title="z",
hovermode="closest"
)
return fig
def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
"""
Generate the eigenvalue distribution of B_n = S_n T_n as n→∞
"""
if cpp_compiled:
eigenvalues, x_vals = generate_eigenvalue_distribution_cpp(beta, y, z_a, n, seed)
else:
# Apply the condition for y
y_effective = y if y > 1 else 1/y
# Set random seed
np.random.seed(seed)
# Compute dimension p based on aspect ratio y
p = int(y_effective * n)
# Constructing T_n (Population / Shape Matrix)
k = int(np.floor(beta * p))
diag_entries = np.concatenate([
np.full(k, z_a),
np.full(p - k, 1.0)
])
np.random.shuffle(diag_entries)
T_n = np.diag(diag_entries)
# Generate the data matrix X with i.i.d. standard normal entries
X = np.random.randn(p, n)
# Compute the sample covariance matrix S_n = (1/n) * XX^T
S_n = (1 / n) * (X @ X.T)
# Compute B_n = S_n T_n
B_n = S_n @ T_n
# Compute eigenvalues of B_n
eigenvalues = np.linalg.eigvalsh(B_n)
# Generate x values for KDE
x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500)
# Use KDE to compute a smooth density estimate
kde = gaussian_kde(eigenvalues)
kde_vals = kde(x_vals)
# Create figure
fig = go.Figure()
# Add histogram trace
fig.add_trace(go.Histogram(x=eigenvalues, histnorm='probability density',
name="Histogram", marker=dict(color='blue', opacity=0.6)))
# Add KDE trace
fig.add_trace(go.Scatter(x=x_vals, y=kde_vals, mode="lines",
name="KDE", line=dict(color='red', width=2)))
fig.update_layout(
title=f"Eigenvalue Distribution for B_n = S_n T_n (y={y:.1f}, β={beta:.2f}, a={z_a:.1f})",
xaxis_title="Eigenvalue",
yaxis_title="Density",
hovermode="closest",
showlegend=True
)
return fig, eigenvalues
def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
s_num_expr=None, s_denom_expr=None,
z_num_expr=None, z_denom_expr=None,
show_derivatives=False,
show_high_y=False,
show_low_y=False,
show_max_k=True,
show_min_t=True,
use_eigenvalue_method=True,
n_samples=1000,
seeds=5):
if z_a <= 0 or y <= 0 or z_min >= z_max:
st.error("Invalid input parameters.")
return None
betas = np.linspace(0, 1, beta_steps)
if use_eigenvalue_method:
# Use the eigenvalue method to compute boundaries
st.info("Computing eigenvalue support boundaries. This may take a moment...")
min_eigs, max_eigs = compute_eigenvalue_support_boundaries(z_a, y, betas, n_samples, seeds)
z_mins, z_maxs = min_eigs, max_eigs
else:
# Use the original discriminant method
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
high_y_curve = compute_high_y_curve(betas, z_a, y) if show_high_y else None
alt_low_expr = compute_alternate_low_expr(betas, z_a, y) if show_low_y else None
# Compute the max/min expressions
max_k_curve = compute_max_k_expression(betas, z_a, y) if show_max_k else None
min_t_curve = compute_min_t_expression(betas, z_a, y) if show_min_t else None
# Compute both custom curves
custom_curve1 = None
custom_curve2 = None
if s_num_expr and s_denom_expr:
custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True)
if z_num_expr and z_denom_expr:
custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False)
# Compute derivatives if needed
if show_derivatives:
derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve,
alt_low_expr, custom_curve1, custom_curve2)
# Calculate derivatives for max_k and min_t curves if they exist
if show_max_k and max_k_curve is not None:
max_k_derivatives = compute_derivatives(max_k_curve, betas)
if show_min_t and min_t_curve is not None:
min_t_derivatives = compute_derivatives(min_t_curve, betas)
fig = go.Figure()
# Original curves
if use_eigenvalue_method:
fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines",
name="Upper Bound (Max Eigenvalue)", line=dict(color='blue')))
fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines",
name="Lower Bound (Min Eigenvalue)", line=dict(color='blue')))
# Add shaded region between curves
fig.add_trace(go.Scatter(
x=np.concatenate([betas, betas[::-1]]),
y=np.concatenate([z_maxs, z_mins[::-1]]),
fill='toself',
fillcolor='rgba(0,0,255,0.2)',
line=dict(color='rgba(255,255,255,0)'),
showlegend=False,
hoverinfo='skip'
))
else:
fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines",
name="Upper z*(β)", line=dict(color='blue')))
fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines",
name="Lower z*(β)", line=dict(color='blue')))
# Add High y Expression only if selected
if show_high_y and high_y_curve is not None:
fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines",
name="High y Expression", line=dict(color='green')))
# Add Low Expression only if selected
if show_low_y and alt_low_expr is not None:
fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines",
name="Low Expression", line=dict(color='orange')))
# Add the max/min curves if selected
if show_max_k and max_k_curve is not None:
fig.add_trace(go.Scatter(x=betas, y=max_k_curve, mode="lines",
name="Max k Expression", line=dict(color='red', width=2)))
if show_min_t and min_t_curve is not None:
fig.add_trace(go.Scatter(x=betas, y=min_t_curve, mode="lines",
name="Min t Expression", line=dict(color='purple', width=2)))
if custom_curve1 is not None:
fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines",
name="Custom 1 (s-based)", line=dict(color='magenta')))
if custom_curve2 is not None:
fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines",
name="Custom 2 (direct)", line=dict(color='brown')))
if show_derivatives:
# First derivatives
curve_info = [
('upper', 'Upper Bound' if use_eigenvalue_method else 'Upper z*(β)', 'blue'),
('lower', 'Lower Bound' if use_eigenvalue_method else 'Lower z*(β)', 'lightblue'),
]
if show_high_y and high_y_curve is not None:
curve_info.append(('high_y', 'High y', 'green'))
if show_low_y and alt_low_expr is not None:
curve_info.append(('alt_low', 'Alt Low', 'orange'))
if custom_curve1 is not None:
curve_info.append(('custom1', 'Custom 1', 'magenta'))
if custom_curve2 is not None:
curve_info.append(('custom2', 'Custom 2', 'brown'))
for key, name, color in curve_info:
if key in derivatives:
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines",
name=f"{name} d/dβ", line=dict(color=color, dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines",
name=f"{name} d²/dβ²", line=dict(color=color, dash='dot')))
# Add derivatives for max_k and min_t curves if they exist
if show_max_k and max_k_curve is not None and 'max_k_derivatives' in locals():
fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[0], mode="lines",
name="Max k d/dβ", line=dict(color='red', dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[1], mode="lines",
name="Max k d²/dβ²", line=dict(color='red', dash='dot')))
if show_min_t and min_t_curve is not None and 'min_t_derivatives' in locals():
fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[0], mode="lines",
name="Min t d/dβ", line=dict(color='purple', dash='dash')))
fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[1], mode="lines",
name="Min t d²/dβ²", line=dict(color='purple', dash='dot')))
fig.update_layout(
title="Curves vs β: Eigenvalue Support Boundaries and Asymptotic Expressions" if use_eigenvalue_method
else "Curves vs β: z*(β) Boundaries and Asymptotic Expressions",
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
return fig
def analyze_complex_root_structure(beta_values, z, z_a, y):
"""
Analyze when the cubic equation switches between having all real roots
and having a complex conjugate pair plus one real root.
Returns:
- transition_points: beta values where the root structure changes
- structure_types: list indicating whether each interval has all real roots or complex roots
"""
# Apply the condition for y
y_effective = y if y > 1 else 1/y
transition_points = []
structure_types = []
previous_type = None
for beta in beta_values:
roots = compute_cubic_roots(z, beta, z_a, y)
# Check if all roots are real (imaginary parts close to zero)
is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
current_type = "real" if is_all_real else "complex"
if previous_type is not None and current_type != previous_type:
# Found a transition point
transition_points.append(beta)
structure_types.append(previous_type)
previous_type = current_type
# Add the final interval type
if previous_type is not None:
structure_types.append(previous_type)
return transition_points, structure_types
# ----------------- Streamlit UI -----------------
st.title("Cubic Root Analysis (C++ Accelerated)")
# Add a note about C++ acceleration
if cpp_compiled:
st.success("✅ C++ acceleration module loaded successfully. Calculations will run faster!")
else:
st.warning("⚠️ C++ module compilation failed. Falling back to Python implementations which will be slower.")
# Define three tabs
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Complex Root Analysis", "Differential Analysis"])
# ----- Tab 1: z*(β) Curves -----
with tab1:
st.header("Eigenvalue Support Boundaries")
# Cleaner layout with better column organization
col1, col2, col3 = st.columns([1, 1, 2])
with col1:
z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
y_1 = st.number_input("y", value=1.0, key="y_1")
with col2:
z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
with col1:
method_type = st.radio(
"Calculation Method",
["Eigenvalue Method", "Discriminant Method"],
index=0 # Default to eigenvalue method
)
# Advanced settings in collapsed expanders
with st.expander("Method Settings", expanded=False):
if method_type == "Eigenvalue Method":
beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
key="beta_steps_eigen")
n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
step=100)
seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1)
else:
beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
key="beta_steps")
z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
step=1000, key="z_steps")
# Curve visibility options
with st.expander("Curve Visibility", expanded=False):
col_vis1, col_vis2 = st.columns(2)
with col_vis1:
show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y")
show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k")
with col_vis2:
show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y")
show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t")
# Custom expressions collapsed by default
with st.expander("Custom Expression 1 (s-based)", expanded=False):
st.markdown("""Enter expressions for s = numerator/denominator
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
st.latex(r"\text{This s will be inserted into:}")
st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
s_num = st.text_input("s numerator", value="", key="s_num")
s_denom = st.text_input("s denominator", value="", key="s_denom")
with st.expander("Custom Expression 2 (direct z(β))", expanded=False):
st.markdown("""Enter direct expression for z(β) = numerator/denominator
(using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
z_num = st.text_input("z(β) numerator", value="", key="z_num")
z_denom = st.text_input("z(β) denominator", value="", key="z_denom")
# Move show_derivatives to main UI level for better visibility
with col2:
show_derivatives = st.checkbox("Show derivatives", value=False)
# Compute button
if st.button("Compute Curves", key="tab1_button"):
with col3:
use_eigenvalue_method = (method_type == "Eigenvalue Method")
if use_eigenvalue_method:
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None,
s_num, s_denom, z_num, z_denom, show_derivatives,
show_high_y, show_low_y, show_max_k, show_min_t,
use_eigenvalue_method=True, n_samples=n_samples,
seeds=seeds)
else:
fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
s_num, s_denom, z_num, z_denom, show_derivatives,
show_high_y, show_low_y, show_max_k, show_min_t,
use_eigenvalue_method=False)
if fig is not None:
st.plotly_chart(fig, use_container_width=True)
# Curve explanations in collapsed expander
with st.expander("Curve Explanations", expanded=False):
if use_eigenvalue_method:
st.markdown("""
- **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n
- **Shaded Region**: Eigenvalue support region
- **High y Expression** (Green): Asymptotic approximation for high y values
- **Low Expression** (Orange): Alternative asymptotic expression
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
- **Custom Expression 2** (Brown): Direct z(β) expression
""")
else:
st.markdown("""
- **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
- **Lower z*(β)** (Blue): Minimum z value where discriminant is zero
- **High y Expression** (Green): Asymptotic approximation for high y values
- **Low Expression** (Orange): Alternative asymptotic expression
- **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
- **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
- **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
- **Custom Expression 2** (Brown): Direct z(β) expression
""")
if show_derivatives:
st.markdown("""
Derivatives are shown as:
- Dashed lines: First derivatives (d/dβ)
- Dotted lines: Second derivatives (d²/dβ²)
""")
# ----- Tab 2: Complex Root Analysis -----
with tab2:
st.header("Complex Root Analysis")
# Create tabs within the page for different plots
plot_tabs = st.tabs(["Im{s} vs. z", "Im{s} vs. β", "Phase Diagram", "Eigenvalue Distribution"])
# Tab for Im{s} vs. z plot
with plot_tabs[0]:
col1, col2 = st.columns([1, 2])
with col1:
beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z")
y_z = st.number_input("y", value=1.0, key="y_tab2_z")
z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z")
z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z")
z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z")
with st.expander("Resolution Settings", expanded=False):
z_points = st.slider("z grid points", min_value=100, max_value=2000, value=500, step=100, key="z_points_z")
if st.button("Compute Complex Roots vs. z", key="tab2_button_z"):
with col2:
fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points)
if fig_im is not None and fig_re is not None and fig_disc is not None:
st.plotly_chart(fig_im, use_container_width=True)
st.plotly_chart(fig_re, use_container_width=True)
st.plotly_chart(fig_disc, use_container_width=True)
with st.expander("Root Structure Analysis", expanded=False):
st.markdown("""
### Root Structure Explanation
The red dashed vertical lines mark the points where the cubic discriminant equals zero.
At these points, the cubic equation's root structure changes:
- When the discriminant is positive, the cubic has three distinct real roots.
- When the discriminant is negative, the cubic has one real root and two complex conjugate roots.
- When the discriminant is exactly zero, the cubic has at least two equal roots.
These transition points align perfectly with the z*(β) boundary curves from the first tab,
which represent exactly these transitions in the (β,z) plane.
""")
# New tab for Im{s} vs. β plot
with plot_tabs[1]:
col1, col2 = st.columns([1, 2])
with col1:
z_beta = st.number_input("z", value=1.0, key="z_tab2_beta")
y_beta = st.number_input("y", value=1.0, key="y_tab2_beta")
z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta")
beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2")
beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2")
with st.expander("Resolution Settings", expanded=False):
beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points")
if st.button("Compute Complex Roots vs. β", key="tab2_button_beta"):
with col2:
fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots(
z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points)
if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None:
st.plotly_chart(fig_im_beta, use_container_width=True)
st.plotly_chart(fig_re_beta, use_container_width=True)
st.plotly_chart(fig_disc, use_container_width=True)
# Add analysis of transition points
transition_points, structure_types = analyze_complex_root_structure(
np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta)
if transition_points:
st.subheader("Root Structure Transition Points")
for i, beta in enumerate(transition_points):
prev_type = structure_types[i]
next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown"
st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots")
else:
st.info("No transitions detected in root structure across this β range.")
# Explanation
with st.expander("Analysis Explanation", expanded=False):
st.markdown("""
### Interpreting the Plots
- **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real.
- **Re{s} vs. β**: Shows how the real parts of the roots change with β.
- **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes.
- When discriminant < 0: The cubic has one real root and two complex conjugate roots.
- When discriminant > 0: The cubic has three distinct real roots.
- When discriminant = 0: The cubic has multiple roots (at least two roots are equal).
The vertical red dashed lines mark the transition points where the root structure changes.
""")
# Tab for Phase Diagram
with plot_tabs[2]:
col1, col2 = st.columns([1, 2])
with col1:
z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase")
y_phase = st.number_input("y", value=1.0, key="y_phase")
beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase")
beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase")
z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase")
z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase")
with st.expander("Resolution Settings", expanded=False):
beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase")
z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase")
if st.button("Generate Phase Diagram", key="tab2_button_phase"):
with col2:
st.info("Generating phase diagram. This may take a while depending on resolution...")
fig_phase = generate_phase_diagram(
z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase,
beta_steps_phase, z_steps_phase)
if fig_phase is not None:
st.plotly_chart(fig_phase, use_container_width=True)
with st.expander("Phase Diagram Explanation", expanded=False):
st.markdown("""
### Understanding the Phase Diagram
This heatmap shows the regions in the (β, z) plane where:
- **Red Regions**: The cubic equation has all real roots
- **Blue Regions**: The cubic equation has one real root and two complex conjugate roots
The boundaries between these regions represent values where the discriminant is zero,
which are the exact same curves as the z*(β) boundaries in the first tab. This phase
diagram provides a comprehensive view of the eigenvalue support structure.
""")
# Eigenvalue distribution tab
with plot_tabs[3]:
st.subheader("Eigenvalue Distribution for B_n = S_n T_n")
with st.expander("Simulation Information", expanded=False):
st.markdown("""
This simulation generates the eigenvalue distribution of B_n as n→∞, where:
- B_n = (1/n)XX^T with X being a p×n matrix
- p/n → y as n→∞
- The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1)
""")
col_eigen1, col_eigen2 = st.columns([1, 2])
with col_eigen1:
beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen")
y_eigen = st.number_input("y", value=1.0, key="y_eigen")
z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen")
n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
# Add comparison option
show_theoretical = st.checkbox("Show theoretical boundaries", value=True)
show_empirical_stats = st.checkbox("Show empirical statistics", value=True)
if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"):
with col_eigen2:
# Generate the eigenvalue distribution
fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed)
# If requested, compute and add theoretical boundaries
if show_theoretical:
# Calculate min and max eigenvalues using the support boundary functions
betas = np.array([beta_eigen])
min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5)
# Add vertical lines for boundaries
fig_eigen.add_vline(
x=min_eig[0],
line=dict(color="red", width=2, dash="dash"),
annotation_text="Min theoretical",
annotation_position="top right"
)
fig_eigen.add_vline(
x=max_eig[0],
line=dict(color="red", width=2, dash="dash"),
annotation_text="Max theoretical",
annotation_position="top left"
)
# Display the plot
st.plotly_chart(fig_eigen, use_container_width=True)
# Add comparison of empirical vs theoretical bounds
if show_theoretical and show_empirical_stats:
empirical_min = eigenvalues.min()
empirical_max = eigenvalues.max()
st.markdown("### Comparison of Empirical vs Theoretical Bounds")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Theoretical Min", f"{min_eig[0]:.4f}")
st.metric("Theoretical Max", f"{max_eig[0]:.4f}")
st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.4f}")
with col2:
st.metric("Empirical Min", f"{empirical_min:.4f}")
st.metric("Empirical Max", f"{empirical_max:.4f}")
st.metric("Empirical Width", f"{empirical_max - empirical_min:.4f}")
with col3:
st.metric("Min Difference", f"{empirical_min - min_eig[0]:.4f}")
st.metric("Max Difference", f"{empirical_max - max_eig[0]:.4f}")
st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.4f}")
# Display additional statistics
if show_empirical_stats:
st.markdown("### Eigenvalue Statistics")
col1, col2 = st.columns(2)
with col1:
st.metric("Mean", f"{np.mean(eigenvalues):.4f}")
st.metric("Median", f"{np.median(eigenvalues):.4f}")
with col2:
st.metric("Standard Deviation", f"{np.std(eigenvalues):.4f}")
st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.4f}")
# ----- Tab 3: Differential Analysis -----
with tab3:
st.header("Differential Analysis vs. β")
with st.expander("Description", expanded=False):
st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.")
col1, col2 = st.columns([1, 2])
with col1:
z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff")
y_diff = st.number_input("y", value=1.0, key="y_diff")
z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff")
z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff")
diff_method_type = st.radio(
"Boundary Calculation Method",
["Eigenvalue Method", "Discriminant Method"],
index=0,
key="diff_method_type"
)
with st.expander("Resolution Settings", expanded=False):
if diff_method_type == "Eigenvalue Method":
beta_steps_diff = st.slider("β steps", min_value=21, max_value=101, value=51, step=10,
key="beta_steps_diff_eigen")
diff_n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000,
step=100, key="diff_n_samples")
diff_seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1,
key="diff_seeds")
else:
beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50,
key="beta_steps_diff")
z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000,
step=1000, key="z_steps_diff")
# Add options for curve selection
st.subheader("Curves to Analyze")
analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
analyze_high_y = st.checkbox("High y Expression", value=False)
analyze_alt_low = st.checkbox("Low y Expression", value=False)
if st.button("Compute Differentials", key="tab3_button"):
with col2:
use_eigenvalue_method_diff = (diff_method_type == "Eigenvalue Method")
if use_eigenvalue_method_diff:
betas_diff = np.linspace(0, 1, beta_steps_diff)
st.info("Computing eigenvalue support boundaries. This may take a moment...")
lower_vals, upper_vals = compute_eigenvalue_support_boundaries(
z_a_diff, y_diff, betas_diff, diff_n_samples, diff_seeds)
else:
betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(
z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
# Create figure
fig_diff = go.Figure()
if analyze_upper_lower:
diff_curve = upper_vals - lower_vals
d1 = np.gradient(diff_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines",
name="Upper-Lower Difference", line=dict(color="magenta", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot')))
if analyze_high_y:
high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff)
d1 = np.gradient(high_y_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines",
name="High y", line=dict(color="green", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="High y d/dβ", line=dict(color="green", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="High y d²/dβ²", line=dict(color="green", dash='dot')))
if analyze_alt_low:
alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff)
d1 = np.gradient(alt_low_curve, betas_diff)
d2 = np.gradient(d1, betas_diff)
fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines",
name="Low y", line=dict(color="orange", width=2)))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines",
name="Low y d/dβ", line=dict(color="orange", dash='dash')))
fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines",
name="Low y d²/dβ²", line=dict(color="orange", dash='dot')))
fig_diff.update_layout(
title="Differential Analysis vs. β" +
(" (Eigenvalue Method)" if use_eigenvalue_method_diff else " (Discriminant Method)"),
xaxis_title="β",
yaxis_title="Value",
hovermode="x unified",
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
st.plotly_chart(fig_diff, use_container_width=True)
with st.expander("Curve Types", expanded=False):
st.markdown("""
- Solid lines: Original curves
- Dashed lines: First derivatives (d/dβ)
- Dotted lines: Second derivatives (d²/dβ²)
""") |