File size: 92,434 Bytes
dd5ca7d
 
 
 
a76f82e
319d05d
c6775fd
a9973b7
42690e4
a9973b7
 
694915a
a9973b7
80ed07e
a9973b7
19ef319
 
80ed07e
6e36ad3
a9973b7
 
 
42690e4
a9973b7
 
 
 
 
 
 
 
 
 
 
 
42690e4
a9973b7
 
865bf97
a9973b7
 
 
 
 
 
 
 
 
 
c02def7
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6775fd
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6775fd
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5ca7d
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5ca7d
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6775fd
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694915a
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6775fd
 
a9973b7
c6775fd
 
 
 
 
 
 
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6775fd
a9973b7
c6775fd
 
 
 
 
 
 
 
 
 
 
 
 
a9973b7
c6775fd
 
 
 
 
 
 
 
 
 
 
a9973b7
c6775fd
a9973b7
c6775fd
 
 
a9973b7
 
 
c6775fd
 
 
 
a9973b7
c6775fd
 
 
 
 
 
 
 
 
a9973b7
c6775fd
a9973b7
c6775fd
 
a9973b7
 
 
c6775fd
 
694915a
c6775fd
 
694915a
c6775fd
 
 
694915a
c6775fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e14afd8
c6775fd
 
 
e14afd8
c6775fd
 
 
e0149a8
c6775fd
 
 
a9973b7
c6775fd
 
 
a9973b7
 
 
c6775fd
 
 
 
 
 
 
 
 
 
 
 
a9973b7
c6775fd
 
 
a9973b7
 
 
c6775fd
 
 
 
 
 
 
a9973b7
c6775fd
 
 
a9973b7
 
 
c6775fd
 
675a582
c6775fd
 
 
 
 
 
 
 
 
 
 
 
 
 
73bcec5
c6775fd
 
 
 
 
 
 
 
 
a9973b7
c6775fd
 
 
a9973b7
 
 
c6775fd
 
694915a
c6775fd
 
 
73bcec5
c6775fd
 
 
 
 
 
 
 
 
 
 
 
 
73bcec5
c6775fd
 
 
 
 
 
 
73bcec5
c6775fd
a9973b7
c6775fd
 
 
 
694915a
c6775fd
c02def7
 
 
 
 
 
 
 
 
0357330
7a1ddff
 
c02def7
 
dec1797
 
c02def7
 
dec1797
 
c02def7
 
 
 
 
 
 
 
 
 
 
 
19ef319
c02def7
 
19ef319
675a582
 
 
df770a8
c02def7
3c11a35
f1f1cff
c02def7
 
 
 
df770a8
 
3c11a35
c02def7
 
 
 
 
 
 
 
 
 
 
99f6a90
 
f1f1cff
 
3c11a35
f1f1cff
675a582
5be6912
 
f1f1cff
7a1ddff
a9973b7
 
 
 
 
 
 
e0149a8
a9973b7
 
19ef319
a9973b7
 
73bcec5
a9973b7
 
dec1797
a9973b7
 
 
 
 
3be6fe9
a9973b7
 
 
 
 
 
 
 
73bcec5
a9973b7
 
 
c02def7
a9973b7
 
dec1797
a9973b7
 
 
 
 
 
dec1797
a9973b7
 
 
 
 
73bcec5
a9973b7
 
 
 
7a1ddff
3994d34
 
 
 
 
a9973b7
3994d34
 
 
 
 
 
 
000e941
 
3994d34
000e941
3994d34
 
 
000e941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3994d34
 
000e941
3994d34
 
 
000e941
 
 
 
 
 
a9973b7
 
 
 
 
 
 
 
000e941
2690664
19ef319
a9973b7
19ef319
 
 
3994d34
19ef319
45cee47
 
 
19ef319
3994d34
 
 
000e941
 
 
 
 
 
 
 
 
 
 
a9973b7
19ef319
000e941
 
3994d34
 
000e941
a9973b7
000e941
 
 
 
 
 
3994d34
 
000e941
3994d34
000e941
3994d34
 
 
 
 
 
 
19ef319
 
 
 
3994d34
 
 
 
 
 
 
 
 
19ef319
 
 
3994d34
19ef319
 
 
 
3994d34
 
 
 
 
19ef319
 
3994d34
 
 
 
 
 
 
 
 
 
 
19ef319
45cee47
 
a9973b7
45cee47
 
 
 
 
 
 
 
 
3994d34
 
 
000e941
 
 
 
 
 
 
 
 
 
 
a9973b7
45cee47
000e941
 
3994d34
 
000e941
a9973b7
000e941
 
 
 
 
 
45cee47
3994d34
000e941
3994d34
000e941
3994d34
 
 
 
 
 
 
45cee47
 
 
 
 
3994d34
 
 
 
 
 
 
 
45cee47
 
 
3994d34
45cee47
 
 
 
 
3994d34
 
 
 
45cee47
 
 
3994d34
45cee47
3994d34
 
45cee47
 
 
3994d34
45cee47
 
 
 
 
 
 
 
a9973b7
 
 
 
 
 
 
45cee47
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
45cee47
a9973b7
 
 
 
 
 
 
 
 
 
 
45cee47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a1ddff
 
a9973b7
3994d34
 
 
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3994d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42690e4
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
675a582
a9973b7
 
 
 
 
 
 
 
 
 
 
45cee47
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694915a
a9973b7
 
 
 
694915a
a9973b7
 
 
 
 
 
 
 
 
 
 
694915a
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694915a
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694915a
a9973b7
 
 
 
 
 
 
45cee47
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45cee47
a9973b7
 
 
45cee47
a9973b7
 
45cee47
a9973b7
 
 
694915a
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45cee47
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45cee47
a9973b7
 
 
 
45cee47
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45cee47
a9973b7
 
 
 
 
 
 
 
 
 
45cee47
a9973b7
 
45cee47
a9973b7
 
 
694915a
a9973b7
694915a
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0149a8
a9973b7
 
 
 
 
 
 
694915a
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0149a8
a9973b7
e0149a8
a9973b7
e0149a8
a9973b7
 
e0149a8
a9973b7
e0149a8
a9973b7
 
 
 
 
 
c02def7
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02def7
a9973b7
 
 
 
 
 
 
 
 
 
 
694915a
a9973b7
 
 
 
 
 
 
 
 
 
 
c02def7
a9973b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02def7
a9973b7
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
import streamlit as st
import sympy as sp
import numpy as np
import plotly.graph_objects as go
from scipy.optimize import fsolve
from scipy.stats import gaussian_kde
import os
import tempfile
import subprocess
import sys
import importlib.util

# Configure Streamlit for Hugging Face Spaces
st.set_page_config(
    page_title="Cubic Root Analysis (C++ Accelerated)",
    layout="wide",
    initial_sidebar_state="collapsed"
)

# Check if C++ module is already compiled, otherwise compile it
cpp_compiled = False

def compile_cpp_module():
    # Define C++ code as a string
    cpp_code = """
    #include <pybind11/pybind11.h>
    #include <pybind11/numpy.h>
    #include <pybind11/stl.h>
    #include <Eigen/Dense>
    #include <Eigen/Eigenvalues>
    #include <complex>
    #include <vector>
    #include <random>
    #include <cmath>
    #include <algorithm>

    namespace py = pybind11;
    using namespace Eigen;

    // Fast discriminant computation function
    double compute_discriminant_fast(double z, double beta, double z_a, double y) {
        double a = z * z_a;
        double b = z * z_a + z + z_a - z_a*y;
        double c = z + z_a + 1 - y*(beta*z_a + 1 - beta);
        double d = 1.0;
        
        // Standard formula for cubic discriminant
        return 18*a*b*c*d - 27*a*a*d*d + b*b*c*c - 2*b*b*b*d - 9*a*c*c*c;
    }

    // Batch computation of discriminant for array of z values
    py::array_t<double> discriminant_array(double beta, double z_a, double y, py::array_t<double> z_values) {
        auto z_buf = z_values.request();
        auto result = py::array_t<double>(z_buf.size);
        auto result_buf = result.request();
        
        double* z_ptr = static_cast<double*>(z_buf.ptr);
        double* result_ptr = static_cast<double*>(result_buf.ptr);
        
        for (size_t i = 0; i < z_buf.size; i++) {
            result_ptr[i] = compute_discriminant_fast(z_ptr[i], beta, z_a, y);
        }
        
        return result;
    }

    // Find zeros of discriminant function
    std::tuple<py::array_t<double>, py::array_t<double>, py::array_t<double>> 
    find_discriminant_zeros(double z_a, double y, double z_min, double z_max, int beta_steps, int z_steps) {
        // Create beta grid
        auto betas = py::array_t<double>(beta_steps);
        auto betas_buf = betas.request();
        double* betas_ptr = static_cast<double*>(betas_buf.ptr);
        
        for (int i = 0; i < beta_steps; i++) {
            betas_ptr[i] = static_cast<double>(i) / (beta_steps - 1);
        }
        
        // Arrays for results
        auto z_mins = py::array_t<double>(beta_steps);
        auto z_maxs = py::array_t<double>(beta_steps);
        auto z_mins_buf = z_mins.request();
        auto z_maxs_buf = z_maxs.request();
        double* z_mins_ptr = static_cast<double*>(z_mins_buf.ptr);
        double* z_maxs_ptr = static_cast<double*>(z_maxs_buf.ptr);
        
        // Apply condition for y
        double y_effective = y > 1.0 ? y : 1.0/y;
        
        // Create z grid
        std::vector<double> z_grid(z_steps);
        for (int i = 0; i < z_steps; i++) {
            z_grid[i] = z_min + (z_max - z_min) * static_cast<double>(i) / (z_steps - 1);
        }
        
        // For each beta value, find min and max z where discriminant is zero
        #pragma omp parallel for
        for (int b_idx = 0; b_idx < beta_steps; b_idx++) {
            double beta = betas_ptr[b_idx];
            std::vector<double> roots_found;
            
            // Calculate discriminant for all z values
            std::vector<double> disc_vals(z_steps);
            for (int i = 0; i < z_steps; i++) {
                disc_vals[i] = compute_discriminant_fast(z_grid[i], beta, z_a, y_effective);
            }
            
            // Find sign changes (zeros of discriminant)
            for (int i = 0; i < z_steps - 1; i++) {
                double f1 = disc_vals[i];
                double f2 = disc_vals[i+1];
                
                if (std::isnan(f1) || std::isnan(f2)) {
                    continue;
                }
                
                if (f1 == 0.0) {
                    roots_found.push_back(z_grid[i]);
                } else if (f2 == 0.0) {
                    roots_found.push_back(z_grid[i+1]);
                } else if (f1 * f2 < 0) {
                    // Binary search for more accurate root
                    double zl = z_grid[i], zr = z_grid[i+1];
                    for (int j = 0; j < 50; j++) {
                        double mid = 0.5 * (zl + zr);
                        double fm = compute_discriminant_fast(mid, beta, z_a, y_effective);
                        
                        if (fm == 0) {
                            zl = zr = mid;
                            break;
                        }
                        
                        if ((fm > 0 && f1 > 0) || (fm < 0 && f1 < 0)) {
                            zl = mid;
                            f1 = fm;
                        } else {
                            zr = mid;
                            f2 = fm;
                        }
                    }
                    roots_found.push_back(0.5 * (zl + zr));
                }
            }
            
            // Store min and max roots if any found
            if (roots_found.empty()) {
                z_mins_ptr[b_idx] = std::numeric_limits<double>::quiet_NaN();
                z_maxs_ptr[b_idx] = std::numeric_limits<double>::quiet_NaN();
            } else {
                double min_root = *std::min_element(roots_found.begin(), roots_found.end());
                double max_root = *std::max_element(roots_found.begin(), roots_found.end());
                
                z_mins_ptr[b_idx] = min_root;
                z_maxs_ptr[b_idx] = max_root;
            }
        }
        
        return std::make_tuple(betas, z_mins, z_maxs);
    }

    // Compute eigenvalue support boundaries
    std::tuple<py::array_t<double>, py::array_t<double>> 
    compute_eigenvalue_boundaries(double z_a, double y, py::array_t<double> beta_values, int n_samples, int seeds) {
        auto beta_buf = beta_values.request();
        int beta_steps = beta_buf.size;
        
        // Results arrays
        auto min_eigenvalues = py::array_t<double>(beta_steps);
        auto max_eigenvalues = py::array_t<double>(beta_steps);
        auto min_buf = min_eigenvalues.request();
        auto max_buf = max_eigenvalues.request();
        double* min_ptr = static_cast<double*>(min_buf.ptr);
        double* max_ptr = static_cast<double*>(max_buf.ptr);
        double* beta_ptr = static_cast<double*>(beta_buf.ptr);
        
        // Apply condition for y
        double y_effective = y > 1.0 ? y : 1.0/y;
        
        // Compute eigenvalues for each beta value
        #pragma omp parallel for
        for (int i = 0; i < beta_steps; i++) {
            double beta = beta_ptr[i];
            
            std::vector<double> min_vals;
            std::vector<double> max_vals;
            
            // Run multiple trials with different seeds
            for (int seed = 0; seed < seeds; seed++) {
                // Set random seed
                std::mt19937 gen(seed * 100 + i);
                std::normal_distribution<double> normal_dist(0.0, 1.0);
                
                // Compute dimension p based on aspect ratio y
                int p = static_cast<int>(y_effective * n_samples);
                
                // Constructing T_n (Population / Shape Matrix)
                int k = static_cast<int>(std::floor(beta * p));
                
                // Create diagonal entries
                std::vector<double> diag_entries(p);
                std::fill_n(diag_entries.begin(), k, z_a);
                std::fill_n(diag_entries.begin() + k, p - k, 1.0);
                
                // Shuffle the diagonal entries
                std::shuffle(diag_entries.begin(), diag_entries.end(), gen);
                
                // Create T_n matrix
                MatrixXd T_n = MatrixXd::Zero(p, p);
                for (int j = 0; j < p; j++) {
                    T_n(j, j) = diag_entries[j];
                }
                
                // Generate random data matrix X with standard normal entries
                MatrixXd X(p, n_samples);
                for (int r = 0; r < p; r++) {
                    for (int c = 0; c < n_samples; c++) {
                        X(r, c) = normal_dist(gen);
                    }
                }
                
                // Compute sample covariance matrix S_n = (1/n) * XX^T
                MatrixXd S_n = (1.0 / n_samples) * (X * X.transpose());
                
                // Compute B_n = S_n T_n
                MatrixXd B_n = S_n * T_n;
                
                // Compute eigenvalues
                SelfAdjointEigenSolver<MatrixXd> solver(B_n);
                VectorXd eigenvalues = solver.eigenvalues();
                
                // Store min and max eigenvalues
                min_vals.push_back(eigenvalues.minCoeff());
                max_vals.push_back(eigenvalues.maxCoeff());
            }
            
            // Compute averages
            double min_avg = 0.0, max_avg = 0.0;
            for (double val : min_vals) min_avg += val;
            for (double val : max_vals) max_avg += val;
            
            min_ptr[i] = min_avg / seeds;
            max_ptr[i] = max_avg / seeds;
        }
        
        return std::make_tuple(min_eigenvalues, max_eigenvalues);
    }

    // Compute cubic roots using fast C++ implementation
    py::array_t<std::complex<double>> compute_cubic_roots_cpp(double z, double beta, double z_a, double y) {
        // Apply the condition for y
        double y_effective = y > 1.0 ? y : 1.0/y;
        
        // Coefficients in the form as³ + bs² + cs + d = 0
        double a = z * z_a;
        double b = z * z_a + z + z_a - z_a*y_effective;
        double c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta);
        double d = 1.0;
        
        // Handle special cases
        if (std::abs(a) < 1e-10) {
            // Create result array
            auto result = py::array_t<std::complex<double>>(3);
            auto buf = result.request();
            std::complex<double>* ptr = static_cast<std::complex<double>*>(buf.ptr);
            
            if (std::abs(b) < 1e-10) {  // Linear case
                ptr[0] = std::complex<double>(-d/c, 0.0);
                ptr[1] = std::complex<double>(0.0, 0.0);
                ptr[2] = std::complex<double>(0.0, 0.0);
            } else {  // Quadratic case
                double discriminant = c*c - 4*b*d;
                if (discriminant >= 0) {
                    double sqrt_disc = std::sqrt(discriminant);
                    ptr[0] = std::complex<double>((-c + sqrt_disc) / (2*b), 0.0);
                    ptr[1] = std::complex<double>((-c - sqrt_disc) / (2*b), 0.0);
                } else {
                    double sqrt_disc = std::sqrt(-discriminant);
                    ptr[0] = std::complex<double>(-c/(2*b), sqrt_disc/(2*b));
                    ptr[1] = std::complex<double>(-c/(2*b), -sqrt_disc/(2*b));
                }
                ptr[2] = std::complex<double>(0.0, 0.0);
            }
            return result;
        }
        
        // For better numerical stability, normalize the equation: x³ + px² + qx + r = 0
        double p = b / a;
        double q = c / a;
        double r = d / a;
        
        // Depressed cubic: t³ + pt + q = 0 where x = t - p/3
        double p_prime = q - p*p/3.0;
        double q_prime = r - p*q/3.0 + 2.0*p*p*p/27.0;
        
        // Compute discriminant
        double discriminant = 4.0*p_prime*p_prime*p_prime/27.0 + q_prime*q_prime;
        
        // Create result array
        auto result = py::array_t<std::complex<double>>(3);
        auto buf = result.request();
        std::complex<double>* ptr = static_cast<std::complex<double>*>(buf.ptr);
        
        // Calculate roots based on discriminant
        if (std::abs(discriminant) < 1e-10) {  // Discriminant ≈ 0
            if (std::abs(q_prime) < 1e-10) {  // Triple root
                ptr[0] = ptr[1] = ptr[2] = std::complex<double>(-p/3.0, 0.0);
            } else {  // One simple, one double root
                double u = std::cbrt(-q_prime/2.0);
                ptr[0] = std::complex<double>(2*u - p/3.0, 0.0);
                ptr[1] = ptr[2] = std::complex<double>(-u - p/3.0, 0.0);
            }
        } else if (discriminant > 0) {  // One real, two complex conjugate roots
            double sqrt_disc = std::sqrt(discriminant);
            std::complex<double> u = std::pow(std::complex<double>(-q_prime/2.0 + sqrt_disc/2.0, 0.0), 1.0/3.0);
            std::complex<double> v = std::pow(std::complex<double>(-q_prime/2.0 - sqrt_disc/2.0, 0.0), 1.0/3.0);
            
            ptr[0] = std::complex<double>(std::real(u + v) - p/3.0, 0.0);
            
            std::complex<double> omega(-0.5, 0.866025403784439);  // -1/2 + i*√3/2
            std::complex<double> omega2(-0.5, -0.866025403784439); // -1/2 - i*√3/2
            
            ptr[1] = omega * u + omega2 * v - std::complex<double>(p/3.0, 0.0);
            ptr[2] = omega2 * u + omega * v - std::complex<double>(p/3.0, 0.0);
        } else {  // Three distinct real roots
            double sqrt_disc = std::sqrt(-discriminant);
            double theta = std::atan2(sqrt_disc, -2.0*q_prime);
            double r_prime = std::pow(q_prime*q_prime + discriminant/4.0, 1.0/6.0);
            
            ptr[0] = std::complex<double>(2.0*r_prime*std::cos(theta/3.0) - p/3.0, 0.0);
            ptr[1] = std::complex<double>(2.0*r_prime*std::cos((theta + 2.0*M_PI)/3.0) - p/3.0, 0.0);
            ptr[2] = std::complex<double>(2.0*r_prime*std::cos((theta + 4.0*M_PI)/3.0) - p/3.0, 0.0);
        }
        
        return result;
    }

    // Compute high y curve
    py::array_t<double> compute_high_y_curve(py::array_t<double> betas, double z_a, double y) {
        auto beta_buf = betas.request();
        auto result = py::array_t<double>(beta_buf.size);
        auto result_buf = result.request();
        
        double* beta_ptr = static_cast<double*>(beta_buf.ptr);
        double* result_ptr = static_cast<double*>(result_buf.ptr);
        
        // Apply the condition for y
        double y_effective = y > 1.0 ? y : 1.0/y;
        
        double a = z_a;
        double denominator = 1.0 - 2.0*a;
        
        #pragma omp parallel for
        for (size_t i = 0; i < beta_buf.size; i++) {
            if (std::abs(denominator) < 1e-10) {
                result_ptr[i] = std::numeric_limits<double>::quiet_NaN();
                continue;
            }
            
            double beta = beta_ptr[i];
            double numerator = -4.0*a*(a-1.0)*y_effective*beta - 2.0*a*y_effective - 2.0*a*(2.0*a-1.0);
            result_ptr[i] = numerator/denominator;
        }
        
        return result;
    }

    // Compute alternate low expression
    py::array_t<double> compute_alternate_low_expr(py::array_t<double> betas, double z_a, double y) {
        auto beta_buf = betas.request();
        auto result = py::array_t<double>(beta_buf.size);
        auto result_buf = result.request();
        
        double* beta_ptr = static_cast<double*>(beta_buf.ptr);
        double* result_ptr = static_cast<double*>(result_buf.ptr);
        
        // Apply the condition for y
        double y_effective = y > 1.0 ? y : 1.0/y;
        
        #pragma omp parallel for
        for (size_t i = 0; i < beta_buf.size; i++) {
            double beta = beta_ptr[i];
            result_ptr[i] = (z_a * y_effective * beta * (z_a - 1.0) - 2.0*z_a*(1.0 - y_effective) - 2.0*z_a*z_a) / (2.0 + 2.0*z_a);
        }
        
        return result;
    }

    // Compute max k expression
    py::array_t<double> compute_max_k_expression(py::array_t<double> betas, double z_a, double y, int k_samples=1000) {
        auto beta_buf = betas.request();
        auto result = py::array_t<double>(beta_buf.size);
        auto result_buf = result.request();
        
        double* beta_ptr = static_cast<double*>(beta_buf.ptr);
        double* result_ptr = static_cast<double*>(result_buf.ptr);
        
        // Apply the condition for y
        double y_effective = y > 1.0 ? y : 1.0/y;
        
        double a = z_a;
        // Sample k values on a logarithmic scale
        std::vector<double> k_values(k_samples);
        for (int j = 0; j < k_samples; j++) {
            k_values[j] = std::pow(10.0, -3.0 + 6.0 * static_cast<double>(j) / (k_samples - 1));
        }
        
        #pragma omp parallel for
        for (size_t i = 0; i < beta_buf.size; i++) {
            double beta = beta_ptr[i];
            std::vector<double> values(k_samples);
            
            // Compute expression value for each k
            for (int j = 0; j < k_samples; j++) {
                double k = k_values[j];
                double numerator = y_effective*beta*(a-1.0)*k + (a*k+1.0)*((y_effective-1.0)*k-1.0);
                double denominator = (a*k+1.0)*(k*k+k);
                
                if (std::abs(denominator) < 1e-10) {
                    values[j] = std::numeric_limits<double>::quiet_NaN();
                } else {
                    values[j] = numerator/denominator;
                }
            }
            
            // Find maximum value (excluding NaNs)
            double max_val = -std::numeric_limits<double>::infinity();
            bool has_valid = false;
            
            for (double val : values) {
                if (!std::isnan(val)) {
                    max_val = std::max(max_val, val);
                    has_valid = true;
                }
            }
            
            result_ptr[i] = has_valid ? max_val : std::numeric_limits<double>::quiet_NaN();
        }
        
        return result;
    }

    // Compute min t expression
    py::array_t<double> compute_min_t_expression(py::array_t<double> betas, double z_a, double y, int t_samples=1000) {
        auto beta_buf = betas.request();
        auto result = py::array_t<double>(beta_buf.size);
        auto result_buf = result.request();
        
        double* beta_ptr = static_cast<double*>(beta_buf.ptr);
        double* result_ptr = static_cast<double*>(result_buf.ptr);
        
        // Apply the condition for y
        double y_effective = y > 1.0 ? y : 1.0/y;
        
        double a = z_a;
        if (a <= 0) {
            for (size_t i = 0; i < beta_buf.size; i++) {
                result_ptr[i] = std::numeric_limits<double>::quiet_NaN();
            }
            return result;
        }
        
        double lower_bound = -1.0/a + 1e-10;  // Avoid division by zero
        
        #pragma omp parallel for
        for (size_t i = 0; i < beta_buf.size; i++) {
            double beta = beta_ptr[i];
            
            // Sample t values
            std::vector<double> t_values(t_samples);
            for (int j = 0; j < t_samples; j++) {
                t_values[j] = lower_bound + (-1e-10 - lower_bound) * static_cast<double>(j) / (t_samples - 1);
            }
            
            std::vector<double> values(t_samples);
            
            // Compute expression value for each t
            for (int j = 0; j < t_samples; j++) {
                double t = t_values[j];
                double numerator = y_effective*beta*(a-1.0)*t + (a*t+1.0)*((y_effective-1.0)*t-1.0);
                double denominator = (a*t+1.0)*(t*t+t);
                
                if (std::abs(denominator) < 1e-10) {
                    values[j] = std::numeric_limits<double>::quiet_NaN();
                } else {
                    values[j] = numerator/denominator;
                }
            }
            
            // Find minimum value (excluding NaNs)
            double min_val = std::numeric_limits<double>::infinity();
            bool has_valid = false;
            
            for (double val : values) {
                if (!std::isnan(val)) {
                    min_val = std::min(min_val, val);
                    has_valid = true;
                }
            }
            
            result_ptr[i] = has_valid ? min_val : std::numeric_limits<double>::quiet_NaN();
        }
        
        return result;
    }

    // Generate eigenvalue distribution
    std::tuple<py::array_t<double>, py::array_t<double>> 
    generate_eigenvalue_distribution_cpp(double beta, double y, double z_a, int n, int seed) {
        // Apply the condition for y
        double y_effective = y > 1.0 ? y : 1.0/y;
        
        // Set random seed
        std::mt19937 gen(seed);
        std::normal_distribution<double> normal_dist(0.0, 1.0);
        
        // Compute dimension p based on aspect ratio y
        int p = static_cast<int>(y_effective * n);
        
        // Constructing T_n (Population / Shape Matrix)
        int k = static_cast<int>(std::floor(beta * p));
        
        // Create diagonal entries
        std::vector<double> diag_entries(p);
        std::fill_n(diag_entries.begin(), k, z_a);
        std::fill_n(diag_entries.begin() + k, p - k, 1.0);
        
        // Shuffle the diagonal entries
        std::shuffle(diag_entries.begin(), diag_entries.end(), gen);
        
        // Create T_n matrix
        MatrixXd T_n = MatrixXd::Zero(p, p);
        for (int i = 0; i < p; i++) {
            T_n(i, i) = diag_entries[i];
        }
        
        // Generate random data matrix X with standard normal entries
        MatrixXd X(p, n);
        for (int r = 0; r < p; r++) {
            for (int c = 0; c < n; c++) {
                X(r, c) = normal_dist(gen);
            }
        }
        
        // Compute sample covariance matrix S_n = (1/n) * XX^T
        MatrixXd S_n = (1.0 / n) * (X * X.transpose());
        
        // Compute B_n = S_n T_n
        MatrixXd B_n = S_n * T_n;
        
        // Compute eigenvalues
        SelfAdjointEigenSolver<MatrixXd> solver(B_n);
        VectorXd eigenvalues = solver.eigenvalues();
        
        // Return eigenvalues as numpy array
        auto result = py::array_t<double>(p);
        auto result_buf = result.request();
        double* result_ptr = static_cast<double*>(result_buf.ptr);
        
        for (int i = 0; i < p; i++) {
            result_ptr[i] = eigenvalues(i);
        }
        
        // Create x grid for KDE estimation (done in Python)
        auto x_grid = py::array_t<double>(500);
        auto x_grid_buf = x_grid.request();
        double* x_grid_ptr = static_cast<double*>(x_grid_buf.ptr);
        
        double min_eig = eigenvalues.minCoeff();
        double max_eig = eigenvalues.maxCoeff();
        
        for (int i = 0; i < 500; i++) {
            x_grid_ptr[i] = min_eig + (max_eig - min_eig) * static_cast<double>(i) / 499.0;
        }
        
        return std::make_tuple(result, x_grid);
    }

    // Generate phase diagram
    py::array_t<int> generate_phase_diagram_cpp(
        double z_a, double y, double beta_min, double beta_max, 
        double z_min, double z_max, int beta_steps, int z_steps) {
        
        // Apply the condition for y
        double y_effective = y > 1.0 ? y : 1.0/y;
        
        // Create result array
        auto result = py::array_t<int>({z_steps, beta_steps});
        auto result_buf = result.request();
        int* result_ptr = static_cast<int*>(result_buf.ptr);
        
        // Create beta and z grids
        std::vector<double> beta_values(beta_steps);
        std::vector<double> z_values(z_steps);
        
        for (int i = 0; i < beta_steps; i++) {
            beta_values[i] = beta_min + (beta_max - beta_min) * static_cast<double>(i) / (beta_steps - 1);
        }
        
        for (int i = 0; i < z_steps; i++) {
            z_values[i] = z_min + (z_max - z_min) * static_cast<double>(i) / (z_steps - 1);
        }
        
        // Analyze roots for each (z, beta) point
        #pragma omp parallel for collapse(2)
        for (int i = 0; i < z_steps; i++) {
            for (int j = 0; j < beta_steps; j++) {
                double z = z_values[i];
                double beta = beta_values[j];
                
                // Coefficients for cubic equation
                double a = z * z_a;
                double b = z * z_a + z + z_a - z_a*y_effective;
                double c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta);
                double d = 1.0;
                
                // Calculate discriminant
                double discriminant = 18*a*b*c*d - 27*a*a*d*d + b*b*c*c - 2*b*b*b*d - 9*a*c*c*c;
                
                // Set result based on sign of discriminant
                // 1 for all real roots (discriminant > 0), -1 for complex roots (discriminant < 0)
                result_ptr[i * beta_steps + j] = (discriminant > 0) ? 1 : -1;
            }
        }
        
        return result;
    }

    PYBIND11_MODULE(cubic_cpp, m) {
        m.doc() = "C++ accelerated cubic root analysis";
        
        // Expose all the C++ functions to Python
        m.def("discriminant_array", &discriminant_array, "Compute cubic discriminant for array of z values");
        m.def("find_discriminant_zeros", &find_discriminant_zeros, "Find zeros of the discriminant function");
        m.def("compute_eigenvalue_boundaries", &compute_eigenvalue_boundaries, "Compute eigenvalue boundaries");
        m.def("compute_cubic_roots_cpp", &compute_cubic_roots_cpp, "Compute cubic roots");
        m.def("compute_high_y_curve", &compute_high_y_curve, "Compute high y curve");
        m.def("compute_alternate_low_expr", &compute_alternate_low_expr, "Compute alternate low expression");
        m.def("compute_max_k_expression", &compute_max_k_expression, "Compute max k expression");
        m.def("compute_min_t_expression", &compute_min_t_expression, "Compute min t expression");
        m.def("generate_eigenvalue_distribution_cpp", &generate_eigenvalue_distribution_cpp, "Generate eigenvalue distribution");
        m.def("generate_phase_diagram_cpp", &generate_phase_diagram_cpp, "Generate phase diagram");
    }
    """
    
    # Create a temporary directory to compile the C++ code
    with tempfile.TemporaryDirectory() as tmpdirname:
        # Write C++ code to file
        with open(os.path.join(tmpdirname, "cubic_cpp.cpp"), "w") as f:
            f.write(cpp_code)
        
        # Write setup.py for compiling with pybind11
        setup_py = """
from setuptools import setup, Extension
from pybind11.setup_helpers import Pybind11Extension, build_ext

ext_modules = [
    Pybind11Extension(
        "cubic_cpp",
        ["cubic_cpp.cpp"],
        include_dirs=["/usr/include/eigen3"],
        extra_compile_args=["-fopenmp", "-O3", "-march=native", "-ffast-math"],
        extra_link_args=["-fopenmp"],
        cxx_std=17,
    ),
]

setup(
    name="cubic_cpp",
    ext_modules=ext_modules,
    cmdclass={"build_ext": build_ext},
)
        """
        
        with open(os.path.join(tmpdirname, "setup.py"), "w") as f:
            f.write(setup_py)
        
        # Compile the module
        st.info("Compiling C++ module... This may take a moment.")
        try:
            result = subprocess.run(
                [sys.executable, "setup.py", "build_ext", "--inplace"],
                cwd=tmpdirname,
                capture_output=True,
                text=True,
                check=True
            )
            
            # Get the compiled module path
            module_path = None
            for file in os.listdir(tmpdirname):
                if file.startswith("cubic_cpp") and file.endswith(".so"):
                    module_path = os.path.join(tmpdirname, file)
                    break
            
            if not module_path:
                st.error("Failed to find compiled module.")
                st.code(result.stdout)
                st.code(result.stderr)
                return False
            
            # Import the module
            spec = importlib.util.spec_from_file_location("cubic_cpp", module_path)
            cubic_cpp = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(cubic_cpp)
            
            # Make functions available globally
            globals()["discriminant_array"] = cubic_cpp.discriminant_array
            globals()["find_discriminant_zeros"] = cubic_cpp.find_discriminant_zeros
            globals()["compute_eigenvalue_boundaries"] = cubic_cpp.compute_eigenvalue_boundaries
            globals()["compute_cubic_roots_cpp"] = cubic_cpp.compute_cubic_roots_cpp
            globals()["compute_high_y_curve"] = cubic_cpp.compute_high_y_curve
            globals()["compute_alternate_low_expr"] = cubic_cpp.compute_alternate_low_expr
            globals()["compute_max_k_expression"] = cubic_cpp.compute_max_k_expression
            globals()["compute_min_t_expression"] = cubic_cpp.compute_min_t_expression
            globals()["generate_eigenvalue_distribution_cpp"] = cubic_cpp.generate_eigenvalue_distribution_cpp
            globals()["generate_phase_diagram_cpp"] = cubic_cpp.generate_phase_diagram_cpp
            
            st.success("C++ module compiled successfully!")
            return True
            
        except subprocess.CalledProcessError as e:
            st.error(f"Compilation failed: {e}")
            st.code(e.stdout)
            st.code(e.stderr)
            return False

# Try to compile the C++ module
cpp_compiled = compile_cpp_module()

# Python fallback functions if C++ compilation failed
def add_sqrt_support(expr_str):
    """Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility"""
    return expr_str.replace('sqrt(', 'sp.sqrt(')

@st.cache_data
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
    """
    Scan z in [z_min, z_max] for sign changes in the discriminant,
    and return approximated roots (where the discriminant is zero).
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    # Symbolic variables for the cubic discriminant
    z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True)
    
    # Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
    a_sym = z_sym * z_a_sym
    b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
    c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
    d_sym = 1
    
    # Symbolic expression for the cubic discriminant
    Delta_expr = (
        ((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2
        + (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3
    )
    
    # Fast numeric function for the discriminant
    discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy")
    
    z_grid = np.linspace(z_min, z_max, steps)
    disc_vals = discriminant_func(z_grid, beta, z_a, y_effective)
    roots_found = []
    for i in range(len(z_grid) - 1):
        f1, f2 = disc_vals[i], disc_vals[i+1]
        if np.isnan(f1) or np.isnan(f2):
            continue
        if f1 == 0.0:
            roots_found.append(z_grid[i])
        elif f2 == 0.0:
            roots_found.append(z_grid[i+1])
        elif f1 * f2 < 0:
            zl, zr = z_grid[i], z_grid[i+1]
            for _ in range(50):
                mid = 0.5 * (zl + zr)
                fm = discriminant_func(mid, beta, z_a, y_effective)
                if fm == 0:
                    zl = zr = mid
                    break
                if np.sign(fm) == np.sign(f1):
                    zl, f1 = mid, fm
                else:
                    zr, f2 = mid, fm
            roots_found.append(0.5 * (zl + zr))
    return np.array(roots_found)

@st.cache_data
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
    """
    Python fallback. For each beta in [0,1] (with beta_steps points), find the minimum and maximum z 
    for which the discriminant is zero.
    Returns: betas, lower z*(β) values, and upper z*(β) values.
    """
    if cpp_compiled:
        return find_discriminant_zeros(z_a, y, z_min, z_max, beta_steps, z_steps)
    
    betas = np.linspace(0, 1, beta_steps)
    z_min_values = []
    z_max_values = []
    for b in betas:
        roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps)
        if len(roots) == 0:
            z_min_values.append(np.nan)
            z_max_values.append(np.nan)
        else:
            z_min_values.append(np.min(roots))
            z_max_values.append(np.max(roots))
    return betas, np.array(z_min_values), np.array(z_max_values)

@st.cache_data
def compute_eigenvalue_support_boundaries(z_a, y, beta_values, n_samples=100, seeds=5):
    """
    Python fallback. Compute the support boundaries of the eigenvalue distribution by directly
    finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values.
    """
    if cpp_compiled:
        return compute_eigenvalue_boundaries(z_a, y, beta_values, n_samples, seeds)
    
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    min_eigenvalues = np.zeros_like(beta_values)
    max_eigenvalues = np.zeros_like(beta_values)
    
    # Use a progress bar for Streamlit
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    for i, beta in enumerate(beta_values):
        # Update progress
        progress_bar.progress((i + 1) / len(beta_values))
        status_text.text(f"Processing β = {beta:.2f} ({i+1}/{len(beta_values)})")
            
        min_vals = []
        max_vals = []
        
        # Run multiple trials with different seeds for more stable results
        for seed in range(seeds):
            # Set random seed
            np.random.seed(seed * 100 + i)
            
            # Compute dimension p based on aspect ratio y
            n = n_samples
            p = int(y_effective * n)
            
            # Constructing T_n (Population / Shape Matrix)
            k = int(np.floor(beta * p))
            diag_entries = np.concatenate([
                np.full(k, z_a),
                np.full(p - k, 1.0)
            ])
            np.random.shuffle(diag_entries)
            T_n = np.diag(diag_entries)
            
            # Generate the data matrix X with i.i.d. standard normal entries
            X = np.random.randn(p, n)
            
            # Compute the sample covariance matrix S_n = (1/n) * XX^T
            S_n = (1 / n) * (X @ X.T)
            
            # Compute B_n = S_n T_n
            B_n = S_n @ T_n
            
            # Compute eigenvalues of B_n
            eigenvalues = np.linalg.eigvalsh(B_n)
            
            # Find minimum and maximum eigenvalues
            min_vals.append(np.min(eigenvalues))
            max_vals.append(np.max(eigenvalues))
        
        # Average over seeds for stability
        min_eigenvalues[i] = np.mean(min_vals)
        max_eigenvalues[i] = np.mean(max_vals)
    
    # Clear progress indicators
    progress_bar.empty()
    status_text.empty()
    
    return min_eigenvalues, max_eigenvalues

@st.cache_data
def compute_high_y_curve(betas, z_a, y):
    """
    Compute the "High y Expression" curve.
    """
    if cpp_compiled:
        return compute_high_y_curve(betas, z_a, y)
    
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    a = z_a
    betas = np.array(betas)
    denominator = 1 - 2*a
    if denominator == 0:
        return np.full_like(betas, np.nan)
    numerator = -4*a*(a-1)*y_effective*betas - 2*a*y_effective - 2*a*(2*a-1)
    return numerator/denominator

@st.cache_data
def compute_alternate_low_expr(betas, z_a, y):
    """
    Compute the alternate low expression.
    """
    if cpp_compiled:
        return compute_alternate_low_expr(betas, z_a, y)
    
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    betas = np.array(betas)
    return (z_a * y_effective * betas * (z_a - 1) - 2*z_a*(1 - y_effective) - 2*z_a**2) / (2 + 2*z_a)

@st.cache_data
def compute_max_k_expression(betas, z_a, y, k_samples=1000):
    """
    Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k))
    """
    if cpp_compiled:
        return compute_max_k_expression(betas, z_a, y, k_samples)
    
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    a = z_a
    # Sample k values on a logarithmic scale
    k_values = np.logspace(-3, 3, k_samples)
    
    max_vals = np.zeros_like(betas)
    for i, beta in enumerate(betas):
        values = np.zeros_like(k_values)
        for j, k in enumerate(k_values):
            numerator = y_effective*beta*(a-1)*k + (a*k+1)*((y_effective-1)*k-1)
            denominator = (a*k+1)*(k**2+k)
            if abs(denominator) < 1e-10:
                values[j] = np.nan
            else:
                values[j] = numerator/denominator
        
        valid_indices = ~np.isnan(values)
        if np.any(valid_indices):
            max_vals[i] = np.max(values[valid_indices])
        else:
            max_vals[i] = np.nan
            
    return max_vals

@st.cache_data
def compute_min_t_expression(betas, z_a, y, t_samples=1000):
    """
    Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t))
    """
    if cpp_compiled:
        return compute_min_t_expression(betas, z_a, y, t_samples)
    
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    a = z_a
    if a <= 0:
        return np.full_like(betas, np.nan)
        
    lower_bound = -1/a + 1e-10  # Avoid division by zero
    t_values = np.linspace(lower_bound, -1e-10, t_samples)
    
    min_vals = np.zeros_like(betas)
    for i, beta in enumerate(betas):
        values = np.zeros_like(t_values)
        for j, t in enumerate(t_values):
            numerator = y_effective*beta*(a-1)*t + (a*t+1)*((y_effective-1)*t-1)
            denominator = (a*t+1)*(t**2+t)
            if abs(denominator) < 1e-10:
                values[j] = np.nan
            else:
                values[j] = numerator/denominator
        
        valid_indices = ~np.isnan(values)
        if np.any(valid_indices):
            min_vals[i] = np.min(values[valid_indices])
        else:
            min_vals[i] = np.nan
            
    return min_vals

@st.cache_data
def compute_derivatives(curve, betas):
    """Compute first and second derivatives of a curve"""
    d1 = np.gradient(curve, betas)
    d2 = np.gradient(d1, betas)
    return d1, d2

def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None):
    """Compute derivatives for all curves"""
    derivatives = {}
    
    # Upper z*(β)
    derivatives['upper'] = compute_derivatives(z_maxs, betas)
    
    # Lower z*(β)
    derivatives['lower'] = compute_derivatives(z_mins, betas)
    
    # Low y Expression (only if provided)
    if low_y_curve is not None:
        derivatives['low_y'] = compute_derivatives(low_y_curve, betas)
    
    # High y Expression
    if high_y_curve is not None:
        derivatives['high_y'] = compute_derivatives(high_y_curve, betas)
    
    # Alternate Low Expression
    if alt_low_expr is not None:
        derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas)
    
    # Custom Expression 1 (if provided)
    if custom_curve1 is not None:
        derivatives['custom1'] = compute_derivatives(custom_curve1, betas)

    # Custom Expression 2 (if provided)
    if custom_curve2 is not None:
        derivatives['custom2'] = compute_derivatives(custom_curve2, betas)
        
    return derivatives

def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True):
    """
    Compute custom curve. If is_s_based=True, compute using s substitution.
    Otherwise, compute direct z(β) expression.
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True)
    local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp}
    
    try:
        # Add sqrt support
        s_num_expr = add_sqrt_support(s_num_expr)
        s_denom_expr = add_sqrt_support(s_denom_expr)
        
        num_expr = sp.sympify(s_num_expr, locals=local_dict)
        denom_expr = sp.sympify(s_denom_expr, locals=local_dict)
        
        if is_s_based:
            # Compute s and substitute into main expression
            s_expr = num_expr / denom_expr
            a = z_a_sym
            numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1)
            denominator = (a*s_expr+1)*(s_expr**2 + s_expr)
            final_expr = numerator/denominator
        else:
            # Direct z(β) expression
            final_expr = num_expr / denom_expr
            
    except sp.SympifyError as e:
        st.error(f"Error parsing expressions: {e}")
        return np.full_like(betas, np.nan)
    
    final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"])
    with np.errstate(divide='ignore', invalid='ignore'):
        result = final_func(betas, z_a, y_effective)
        if np.isscalar(result):
            result = np.full_like(betas, result)
    return result

def compute_cubic_roots(z, beta, z_a, y):
    """
    Compute the roots of the cubic equation for given parameters, using C++ if available.
    """
    if cpp_compiled:
        roots = compute_cubic_roots_cpp(z, beta, z_a, y)
        return roots
    
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    # Import SymPy functions
    from sympy import symbols, solve, im, re, N, Poly
    
    # Create a symbolic variable for the equation
    s = symbols('s')
    
    # Coefficients in the form as^3 + bs^2 + cs + d = 0
    a = z * z_a
    b = z * z_a + z + z_a - z_a*y_effective
    c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
    d = 1
    
    # Handle special cases
    if abs(a) < 1e-10:
        if abs(b) < 1e-10:  # Linear case
            roots = np.array([-d/c, 0, 0], dtype=complex)
        else:  # Quadratic case
            quad_roots = np.roots([b, c, d])
            roots = np.append(quad_roots, 0).astype(complex)
        return roots
    
    try:
        # Create the cubic polynomial
        cubic_eq = Poly(a*s**3 + b*s**2 + c*s + d, s)
        
        # Solve the equation symbolically
        symbolic_roots = solve(cubic_eq, s)
        
        # Convert symbolic roots to complex numbers with high precision
        numerical_roots = []
        for root in symbolic_roots:
            # Use SymPy's N function with high precision
            numerical_root = complex(N(root, 30))
            numerical_roots.append(numerical_root)
        
        # If we got fewer than 3 roots (due to multiplicity), pad with zeros
        while len(numerical_roots) < 3:
            numerical_roots.append(0j)
            
        return np.array(numerical_roots, dtype=complex)
        
    except Exception as e:
        # Fallback to numpy if SymPy has issues
        coeffs = [a, b, c, d]
        return np.roots(coeffs)

def track_roots_consistently(z_values, all_roots):
    """
    Ensure consistent tracking of roots across z values by minimizing discontinuity.
    """
    n_points = len(z_values)
    n_roots = all_roots[0].shape[0]
    tracked_roots = np.zeros((n_points, n_roots), dtype=complex)
    tracked_roots[0] = all_roots[0]
    
    for i in range(1, n_points):
        prev_roots = tracked_roots[i-1]
        current_roots = all_roots[i]
        
        # For each previous root, find the closest current root
        assigned = np.zeros(n_roots, dtype=bool)
        assignments = np.zeros(n_roots, dtype=int)
        
        for j in range(n_roots):
            distances = np.abs(current_roots - prev_roots[j])
            
            # Find the closest unassigned root
            while True:
                best_idx = np.argmin(distances)
                if not assigned[best_idx]:
                    assignments[j] = best_idx
                    assigned[best_idx] = True
                    break
                else:
                    # Mark as infinite distance and try again
                    distances[best_idx] = np.inf
                    
                # Safety check if all are assigned (shouldn't happen)
                if np.all(distances == np.inf):
                    assignments[j] = j  # Default to same index
                    break
        
        # Reorder current roots based on assignments
        tracked_roots[i] = current_roots[assignments]
    
    return tracked_roots

def generate_cubic_discriminant(z, beta, z_a, y_effective):
    """
    Calculate the cubic discriminant using the standard formula.
    For a cubic ax^3 + bx^2 + cx + d:
    Δ = 18abcd - 27a^2d^2 + b^2c^2 - 2b^3d - 9ac^3
    """
    a = z * z_a
    b = z * z_a + z + z_a - z_a*y_effective
    c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta)
    d = 1
    
    # Standard formula for cubic discriminant
    discriminant = (18*a*b*c*d - 27*a**2*d**2 + b**2*c**2 - 2*b**3*d - 9*a*c**3)
    return discriminant

def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
    """
    Generate Im(s) and Re(s) vs. z plots with improved accuracy.
    """
    if z_a <= 0 or y <= 0 or z_min >= z_max:
        st.error("Invalid input parameters.")
        return None, None, None

    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    z_points = np.linspace(z_min, z_max, n_points)
    
    # Collect all roots first
    all_roots = []
    discriminants = []
    
    # Progress indicator
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    for i, z in enumerate(z_points):
        # Update progress
        progress_bar.progress((i + 1) / n_points)
        status_text.text(f"Computing roots for z = {z:.3f} ({i+1}/{n_points})")
        
        # Calculate roots
        roots = compute_cubic_roots(z, beta, z_a, y)
        
        # Initial sorting to help with tracking
        roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
        all_roots.append(roots)
        
        # Calculate discriminant
        disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
        discriminants.append(disc)
    
    # Clear progress indicators
    progress_bar.empty()
    status_text.empty()
    
    all_roots = np.array(all_roots)
    discriminants = np.array(discriminants)
    
    # Track roots consistently across z values
    tracked_roots = track_roots_consistently(z_points, all_roots)
    
    # Extract imaginary and real parts
    ims = np.imag(tracked_roots)
    res = np.real(tracked_roots)
    
    # Create figure for imaginary parts
    fig_im = go.Figure()
    for i in range(3):
        fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
                                    line=dict(width=2)))
    
    # Add vertical lines at discriminant zero crossings
    disc_zeros = []
    for i in range(len(discriminants)-1):
        if discriminants[i] * discriminants[i+1] <= 0:  # Sign change
            zero_pos = z_points[i] + (z_points[i+1] - z_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i])
            disc_zeros.append(zero_pos)
            fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
    
    fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                         xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")

    # Create figure for real parts
    fig_re = go.Figure()
    for i in range(3):
        fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
                                    line=dict(width=2)))
    
    # Add vertical lines at discriminant zero crossings
    for zero_pos in disc_zeros:
        fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
    
    fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                         xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
    
    # Create discriminant plot
    fig_disc = go.Figure()
    fig_disc.add_trace(go.Scatter(x=z_points, y=discriminants, mode="lines", 
                                 name="Cubic Discriminant", line=dict(color="black", width=2)))
    fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
    
    fig_disc.update_layout(title=f"Cubic Discriminant vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                          xaxis_title="z", yaxis_title="Discriminant", hovermode="x unified")
    
    return fig_im, fig_re, fig_disc

def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
    """
    Generate Im(s) and Re(s) vs. β plots.
    """
    if z_a <= 0 or y <= 0 or beta_min >= beta_max:
        st.error("Invalid input parameters.")
        return None, None, None

    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    beta_points = np.linspace(beta_min, beta_max, n_points)
    
    # Collect all roots first
    all_roots = []
    discriminants = []
    
    # Progress indicator
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    for i, beta in enumerate(beta_points):
        # Update progress
        progress_bar.progress((i + 1) / n_points)
        status_text.text(f"Computing roots for β = {beta:.3f} ({i+1}/{n_points})")
        
        # Calculate roots
        roots = compute_cubic_roots(z, beta, z_a, y)
        
        # Initial sorting to help with tracking
        roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
        all_roots.append(roots)
        
        # Calculate discriminant
        disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
        discriminants.append(disc)
    
    # Clear progress indicators
    progress_bar.empty()
    status_text.empty()
    
    all_roots = np.array(all_roots)
    discriminants = np.array(discriminants)
    
    # Track roots consistently across beta values
    tracked_roots = track_roots_consistently(beta_points, all_roots)
    
    # Extract imaginary and real parts
    ims = np.imag(tracked_roots)
    res = np.real(tracked_roots)
    
    # Create figure for imaginary parts
    fig_im = go.Figure()
    for i in range(3):
        fig_im.add_trace(go.Scatter(x=beta_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}",
                                    line=dict(width=2)))
    
    # Add vertical lines at discriminant zero crossings
    disc_zeros = []
    for i in range(len(discriminants)-1):
        if discriminants[i] * discriminants[i+1] <= 0:  # Sign change
            zero_pos = beta_points[i] + (beta_points[i+1] - beta_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i])
            disc_zeros.append(zero_pos)
            fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
    
    fig_im.update_layout(title=f"Im{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                         xaxis_title="β", yaxis_title="Im{s}", hovermode="x unified")

    # Create figure for real parts
    fig_re = go.Figure()
    for i in range(3):
        fig_re.add_trace(go.Scatter(x=beta_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}",
                                    line=dict(width=2)))
    
    # Add vertical lines at discriminant zero crossings
    for zero_pos in disc_zeros:
        fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
    
    fig_re.update_layout(title=f"Re{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                         xaxis_title="β", yaxis_title="Re{s}", hovermode="x unified")
    
    # Create discriminant plot
    fig_disc = go.Figure()
    fig_disc.add_trace(go.Scatter(x=beta_points, y=discriminants, mode="lines", 
                                 name="Cubic Discriminant", line=dict(color="black", width=2)))
    fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
    
    fig_disc.update_layout(title=f"Cubic Discriminant vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
                          xaxis_title="β", yaxis_title="Discriminant", hovermode="x unified")
    
    return fig_im, fig_re, fig_disc

def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0, 
                          beta_steps=100, z_steps=100):
    """
    Generate a phase diagram showing regions of complex and real roots.
    """
    if cpp_compiled:
        phase_map = generate_phase_diagram_cpp(z_a, y, beta_min, beta_max, z_min, z_max, beta_steps, z_steps)
        beta_values = np.linspace(beta_min, beta_max, beta_steps)
        z_values = np.linspace(z_min, z_max, z_steps)
    else:
        # Apply the condition for y
        y_effective = y if y > 1 else 1/y
        
        beta_values = np.linspace(beta_min, beta_max, beta_steps)
        z_values = np.linspace(z_min, z_max, z_steps)
        
        # Initialize phase map
        phase_map = np.zeros((z_steps, beta_steps))
        
        # Progress tracking
        progress_bar = st.progress(0)
        status_text = st.empty()
        
        for i, z in enumerate(z_values):
            # Update progress
            progress_bar.progress((i + 1) / len(z_values))
            status_text.text(f"Analyzing phase at z = {z:.2f} ({i+1}/{len(z_values)})")
            
            for j, beta in enumerate(beta_values):
                roots = compute_cubic_roots(z, beta, z_a, y)
                
                # Check if all roots are real (imaginary parts close to zero)
                is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
                
                phase_map[i, j] = 1 if is_all_real else -1
        
        # Clear progress indicators
        progress_bar.empty()
        status_text.empty()
    
    # Create heatmap
    fig = go.Figure(data=go.Heatmap(
        z=phase_map,
        x=beta_values,
        y=z_values,
        colorscale=[[0, 'blue'], [0.5, 'white'], [1.0, 'red']],
        zmin=-1,
        zmax=1,
        showscale=True,
        colorbar=dict(
            title="Root Type",
            tickvals=[-1, 1],
            ticktext=["Complex Roots", "All Real Roots"]
        )
    ))
    
    fig.update_layout(
        title=f"Phase Diagram: Root Structure (y={y:.3f}, z_a={z_a:.3f})",
        xaxis_title="β",
        yaxis_title="z",
        hovermode="closest"
    )
    
    return fig

def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
    """
    Generate the eigenvalue distribution of B_n = S_n T_n as n→∞
    """
    if cpp_compiled:
        eigenvalues, x_vals = generate_eigenvalue_distribution_cpp(beta, y, z_a, n, seed)
    else:
        # Apply the condition for y
        y_effective = y if y > 1 else 1/y
        
        # Set random seed
        np.random.seed(seed)
        
        # Compute dimension p based on aspect ratio y
        p = int(y_effective * n)
        
        # Constructing T_n (Population / Shape Matrix)
        k = int(np.floor(beta * p))
        diag_entries = np.concatenate([
            np.full(k, z_a),
            np.full(p - k, 1.0)
        ])
        np.random.shuffle(diag_entries)
        T_n = np.diag(diag_entries)
        
        # Generate the data matrix X with i.i.d. standard normal entries
        X = np.random.randn(p, n)
        
        # Compute the sample covariance matrix S_n = (1/n) * XX^T
        S_n = (1 / n) * (X @ X.T)
        
        # Compute B_n = S_n T_n
        B_n = S_n @ T_n
        
        # Compute eigenvalues of B_n
        eigenvalues = np.linalg.eigvalsh(B_n)
        
        # Generate x values for KDE
        x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500)
    
    # Use KDE to compute a smooth density estimate
    kde = gaussian_kde(eigenvalues)
    kde_vals = kde(x_vals)
    
    # Create figure
    fig = go.Figure()
    
    # Add histogram trace
    fig.add_trace(go.Histogram(x=eigenvalues, histnorm='probability density', 
                              name="Histogram", marker=dict(color='blue', opacity=0.6)))
    
    # Add KDE trace
    fig.add_trace(go.Scatter(x=x_vals, y=kde_vals, mode="lines", 
                            name="KDE", line=dict(color='red', width=2)))
    
    fig.update_layout(
        title=f"Eigenvalue Distribution for B_n = S_n T_n (y={y:.1f}, β={beta:.2f}, a={z_a:.1f})",
        xaxis_title="Eigenvalue",
        yaxis_title="Density",
        hovermode="closest",
        showlegend=True
    )
    
    return fig, eigenvalues

def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
                          s_num_expr=None, s_denom_expr=None, 
                          z_num_expr=None, z_denom_expr=None,
                          show_derivatives=False,
                          show_high_y=False,
                          show_low_y=False,
                          show_max_k=True,
                          show_min_t=True,
                          use_eigenvalue_method=True,
                          n_samples=1000,
                          seeds=5):
    if z_a <= 0 or y <= 0 or z_min >= z_max:
        st.error("Invalid input parameters.")
        return None

    betas = np.linspace(0, 1, beta_steps)
    
    if use_eigenvalue_method:
        # Use the eigenvalue method to compute boundaries
        st.info("Computing eigenvalue support boundaries. This may take a moment...")
        min_eigs, max_eigs = compute_eigenvalue_support_boundaries(z_a, y, betas, n_samples, seeds)
        z_mins, z_maxs = min_eigs, max_eigs
    else:
        # Use the original discriminant method
        betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
        
    high_y_curve = compute_high_y_curve(betas, z_a, y) if show_high_y else None
    alt_low_expr = compute_alternate_low_expr(betas, z_a, y) if show_low_y else None
    
    # Compute the max/min expressions
    max_k_curve = compute_max_k_expression(betas, z_a, y) if show_max_k else None
    min_t_curve = compute_min_t_expression(betas, z_a, y) if show_min_t else None
    
    # Compute both custom curves
    custom_curve1 = None
    custom_curve2 = None
    if s_num_expr and s_denom_expr:
        custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True)
    if z_num_expr and z_denom_expr:
        custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False)

    # Compute derivatives if needed
    if show_derivatives:
        derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve, 
                                           alt_low_expr, custom_curve1, custom_curve2)
        # Calculate derivatives for max_k and min_t curves if they exist
        if show_max_k and max_k_curve is not None:
            max_k_derivatives = compute_derivatives(max_k_curve, betas)
        if show_min_t and min_t_curve is not None:
            min_t_derivatives = compute_derivatives(min_t_curve, betas)

    fig = go.Figure()
    
    # Original curves
    if use_eigenvalue_method:
        fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", 
                                name="Upper Bound (Max Eigenvalue)", line=dict(color='blue')))
        fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", 
                                name="Lower Bound (Min Eigenvalue)", line=dict(color='blue')))
        # Add shaded region between curves
        fig.add_trace(go.Scatter(
            x=np.concatenate([betas, betas[::-1]]),
            y=np.concatenate([z_maxs, z_mins[::-1]]),
            fill='toself',
            fillcolor='rgba(0,0,255,0.2)',
            line=dict(color='rgba(255,255,255,0)'),
            showlegend=False,
            hoverinfo='skip'
        ))
    else:
        fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", 
                                name="Upper z*(β)", line=dict(color='blue')))
        fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", 
                                name="Lower z*(β)", line=dict(color='blue')))

    # Add High y Expression only if selected
    if show_high_y and high_y_curve is not None:
        fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines", 
                                name="High y Expression", line=dict(color='green')))
    
    # Add Low Expression only if selected
    if show_low_y and alt_low_expr is not None:
        fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines", 
                                name="Low Expression", line=dict(color='orange')))
    
    # Add the max/min curves if selected
    if show_max_k and max_k_curve is not None:
        fig.add_trace(go.Scatter(x=betas, y=max_k_curve, mode="lines", 
                                name="Max k Expression", line=dict(color='red', width=2)))
    
    if show_min_t and min_t_curve is not None:
        fig.add_trace(go.Scatter(x=betas, y=min_t_curve, mode="lines", 
                                name="Min t Expression", line=dict(color='purple', width=2)))
    
    if custom_curve1 is not None:
        fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines", 
                                name="Custom 1 (s-based)", line=dict(color='magenta')))
    if custom_curve2 is not None:
        fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines", 
                                name="Custom 2 (direct)", line=dict(color='brown')))

    if show_derivatives:
        # First derivatives
        curve_info = [
            ('upper', 'Upper Bound' if use_eigenvalue_method else 'Upper z*(β)', 'blue'),
            ('lower', 'Lower Bound' if use_eigenvalue_method else 'Lower z*(β)', 'lightblue'),
        ]
        
        if show_high_y and high_y_curve is not None:
            curve_info.append(('high_y', 'High y', 'green'))
        if show_low_y and alt_low_expr is not None:
            curve_info.append(('alt_low', 'Alt Low', 'orange'))
        
        if custom_curve1 is not None:
            curve_info.append(('custom1', 'Custom 1', 'magenta'))
        if custom_curve2 is not None:
            curve_info.append(('custom2', 'Custom 2', 'brown'))

        for key, name, color in curve_info:
            if key in derivatives:
                fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines", 
                                        name=f"{name} d/dβ", line=dict(color=color, dash='dash')))
                fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines", 
                                        name=f"{name} d²/dβ²", line=dict(color=color, dash='dot')))
        
        # Add derivatives for max_k and min_t curves if they exist
        if show_max_k and max_k_curve is not None and 'max_k_derivatives' in locals():
            fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[0], mode="lines", 
                                    name="Max k d/dβ", line=dict(color='red', dash='dash')))
            fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[1], mode="lines", 
                                    name="Max k d²/dβ²", line=dict(color='red', dash='dot')))
        
        if show_min_t and min_t_curve is not None and 'min_t_derivatives' in locals():
            fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[0], mode="lines", 
                                    name="Min t d/dβ", line=dict(color='purple', dash='dash')))
            fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[1], mode="lines", 
                                    name="Min t d²/dβ²", line=dict(color='purple', dash='dot')))

    fig.update_layout(
        title="Curves vs β: Eigenvalue Support Boundaries and Asymptotic Expressions" if use_eigenvalue_method 
              else "Curves vs β: z*(β) Boundaries and Asymptotic Expressions",
        xaxis_title="β",
        yaxis_title="Value",
        hovermode="x unified",
        showlegend=True,
        legend=dict(
            yanchor="top",
            y=0.99,
            xanchor="left",
            x=0.01
        )
    )
    return fig

def analyze_complex_root_structure(beta_values, z, z_a, y):
    """
    Analyze when the cubic equation switches between having all real roots
    and having a complex conjugate pair plus one real root.
    
    Returns:
    - transition_points: beta values where the root structure changes
    - structure_types: list indicating whether each interval has all real roots or complex roots
    """
    # Apply the condition for y
    y_effective = y if y > 1 else 1/y
    
    transition_points = []
    structure_types = []
    
    previous_type = None
    
    for beta in beta_values:
        roots = compute_cubic_roots(z, beta, z_a, y)
        
        # Check if all roots are real (imaginary parts close to zero)
        is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
        
        current_type = "real" if is_all_real else "complex"
        
        if previous_type is not None and current_type != previous_type:
            # Found a transition point
            transition_points.append(beta)
            structure_types.append(previous_type)
        
        previous_type = current_type
    
    # Add the final interval type
    if previous_type is not None:
        structure_types.append(previous_type)
    
    return transition_points, structure_types

# ----------------- Streamlit UI -----------------
st.title("Cubic Root Analysis (C++ Accelerated)")

# Add a note about C++ acceleration
if cpp_compiled:
    st.success("✅ C++ acceleration module loaded successfully. Calculations will run faster!")
else:
    st.warning("⚠️ C++ module compilation failed. Falling back to Python implementations which will be slower.")

# Define three tabs
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Complex Root Analysis", "Differential Analysis"])

# ----- Tab 1: z*(β) Curves -----
with tab1:
    st.header("Eigenvalue Support Boundaries")
    
    # Cleaner layout with better column organization
    col1, col2, col3 = st.columns([1, 1, 2])
    
    with col1:
        z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1")
        y_1 = st.number_input("y", value=1.0, key="y_1")
        
    with col2:
        z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1")
        z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1")
    
    with col1:
        method_type = st.radio(
            "Calculation Method",
            ["Eigenvalue Method", "Discriminant Method"],
            index=0  # Default to eigenvalue method
        )
    
    # Advanced settings in collapsed expanders
    with st.expander("Method Settings", expanded=False):
        if method_type == "Eigenvalue Method":
            beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, 
                                  key="beta_steps_eigen")
            n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, 
                                step=100)
            seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1)
        else:
            beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, 
                                  key="beta_steps")
            z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, 
                              step=1000, key="z_steps")
    
    # Curve visibility options
    with st.expander("Curve Visibility", expanded=False):
        col_vis1, col_vis2 = st.columns(2)
        with col_vis1:
            show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y")
            show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k")
        with col_vis2:
            show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y")
            show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t")
    
    # Custom expressions collapsed by default
    with st.expander("Custom Expression 1 (s-based)", expanded=False):
        st.markdown("""Enter expressions for s = numerator/denominator 
                    (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
        st.latex(r"\text{This s will be inserted into:}")
        st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}")
        s_num = st.text_input("s numerator", value="", key="s_num")
        s_denom = st.text_input("s denominator", value="", key="s_denom")

    with st.expander("Custom Expression 2 (direct z(β))", expanded=False):
        st.markdown("""Enter direct expression for z(β) = numerator/denominator 
                    (using variables `y`, `beta`, `z_a`, and `sqrt()`)""")
        z_num = st.text_input("z(β) numerator", value="", key="z_num")
        z_denom = st.text_input("z(β) denominator", value="", key="z_denom")

    # Move show_derivatives to main UI level for better visibility
    with col2:
        show_derivatives = st.checkbox("Show derivatives", value=False)

    # Compute button
    if st.button("Compute Curves", key="tab1_button"):
        with col3:
            use_eigenvalue_method = (method_type == "Eigenvalue Method")
            if use_eigenvalue_method:
                fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None,
                                            s_num, s_denom, z_num, z_denom, show_derivatives, 
                                            show_high_y, show_low_y, show_max_k, show_min_t,
                                            use_eigenvalue_method=True, n_samples=n_samples, 
                                            seeds=seeds)
            else:
                fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps,
                                            s_num, s_denom, z_num, z_denom, show_derivatives,
                                            show_high_y, show_low_y, show_max_k, show_min_t,
                                            use_eigenvalue_method=False)
            
            if fig is not None:
                st.plotly_chart(fig, use_container_width=True)
                
                # Curve explanations in collapsed expander
                with st.expander("Curve Explanations", expanded=False):
                    if use_eigenvalue_method:
                        st.markdown("""
                        - **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n
                        - **Shaded Region**: Eigenvalue support region
                        - **High y Expression** (Green): Asymptotic approximation for high y values
                        - **Low Expression** (Orange): Alternative asymptotic expression
                        - **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
                        - **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
                        - **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
                        - **Custom Expression 2** (Brown): Direct z(β) expression
                        """)
                    else:
                        st.markdown("""
                        - **Upper z*(β)** (Blue): Maximum z value where discriminant is zero
                        - **Lower z*(β)** (Blue): Minimum z value where discriminant is zero
                        - **High y Expression** (Green): Asymptotic approximation for high y values
                        - **Low Expression** (Orange): Alternative asymptotic expression
                        - **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$
                        - **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$
                        - **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula
                        - **Custom Expression 2** (Brown): Direct z(β) expression
                        """)
                    if show_derivatives:
                        st.markdown("""
                        Derivatives are shown as:
                        - Dashed lines: First derivatives (d/dβ)
                        - Dotted lines: Second derivatives (d²/dβ²)
                        """)

# ----- Tab 2: Complex Root Analysis -----
with tab2:
    st.header("Complex Root Analysis")
    
    # Create tabs within the page for different plots
    plot_tabs = st.tabs(["Im{s} vs. z", "Im{s} vs. β", "Phase Diagram", "Eigenvalue Distribution"])
    
    # Tab for Im{s} vs. z plot
    with plot_tabs[0]:
        col1, col2 = st.columns([1, 2])
        with col1:
            beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z")
            y_z = st.number_input("y", value=1.0, key="y_tab2_z")
            z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z")
            z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z")
            z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z")
            with st.expander("Resolution Settings", expanded=False):
                z_points = st.slider("z grid points", min_value=100, max_value=2000, value=500, step=100, key="z_points_z")
        if st.button("Compute Complex Roots vs. z", key="tab2_button_z"):
            with col2:
                fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points)
                if fig_im is not None and fig_re is not None and fig_disc is not None:
                    st.plotly_chart(fig_im, use_container_width=True)
                    st.plotly_chart(fig_re, use_container_width=True)
                    st.plotly_chart(fig_disc, use_container_width=True)
                    
                    with st.expander("Root Structure Analysis", expanded=False):
                        st.markdown("""
                        ### Root Structure Explanation
                        
                        The red dashed vertical lines mark the points where the cubic discriminant equals zero.
                        At these points, the cubic equation's root structure changes:
                        
                        - When the discriminant is positive, the cubic has three distinct real roots.
                        - When the discriminant is negative, the cubic has one real root and two complex conjugate roots.
                        - When the discriminant is exactly zero, the cubic has at least two equal roots.
                        
                        These transition points align perfectly with the z*(β) boundary curves from the first tab,
                        which represent exactly these transitions in the (β,z) plane.
                        """)

    # New tab for Im{s} vs. β plot
    with plot_tabs[1]:
        col1, col2 = st.columns([1, 2])
        with col1:
            z_beta = st.number_input("z", value=1.0, key="z_tab2_beta")
            y_beta = st.number_input("y", value=1.0, key="y_tab2_beta")
            z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta")
            beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2")
            beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2")
            with st.expander("Resolution Settings", expanded=False):
                beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points")
        if st.button("Compute Complex Roots vs. β", key="tab2_button_beta"):
            with col2:
                fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots(
                    z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points)
                
                if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None:
                    st.plotly_chart(fig_im_beta, use_container_width=True)
                    st.plotly_chart(fig_re_beta, use_container_width=True)
                    st.plotly_chart(fig_disc, use_container_width=True)
                    
                    # Add analysis of transition points
                    transition_points, structure_types = analyze_complex_root_structure(
                        np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta)
                    
                    if transition_points:
                        st.subheader("Root Structure Transition Points")
                        for i, beta in enumerate(transition_points):
                            prev_type = structure_types[i]
                            next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown"
                            st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots")
                    else:
                        st.info("No transitions detected in root structure across this β range.")
                    
                    # Explanation
                    with st.expander("Analysis Explanation", expanded=False):
                        st.markdown("""
                        ### Interpreting the Plots
                        
                        - **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real.
                        - **Re{s} vs. β**: Shows how the real parts of the roots change with β.
                        - **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes.
                          - When discriminant < 0: The cubic has one real root and two complex conjugate roots.
                          - When discriminant > 0: The cubic has three distinct real roots.
                          - When discriminant = 0: The cubic has multiple roots (at least two roots are equal).
                        
                        The vertical red dashed lines mark the transition points where the root structure changes.
                        """)
    
    # Tab for Phase Diagram
    with plot_tabs[2]:
        col1, col2 = st.columns([1, 2])
        with col1:
            z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase")
            y_phase = st.number_input("y", value=1.0, key="y_phase")
            beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase")
            beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase")
            z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase")
            z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase")
            
            with st.expander("Resolution Settings", expanded=False):
                beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase")
                z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase")
        
        if st.button("Generate Phase Diagram", key="tab2_button_phase"):
            with col2:
                st.info("Generating phase diagram. This may take a while depending on resolution...")
                fig_phase = generate_phase_diagram(
                    z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase, 
                    beta_steps_phase, z_steps_phase)
                
                if fig_phase is not None:
                    st.plotly_chart(fig_phase, use_container_width=True)
                    
                    with st.expander("Phase Diagram Explanation", expanded=False):
                        st.markdown("""
                        ### Understanding the Phase Diagram
                        
                        This heatmap shows the regions in the (β, z) plane where:
                        
                        - **Red Regions**: The cubic equation has all real roots
                        - **Blue Regions**: The cubic equation has one real root and two complex conjugate roots
                        
                        The boundaries between these regions represent values where the discriminant is zero,
                        which are the exact same curves as the z*(β) boundaries in the first tab. This phase
                        diagram provides a comprehensive view of the eigenvalue support structure.
                        """)

    # Eigenvalue distribution tab
    with plot_tabs[3]:
        st.subheader("Eigenvalue Distribution for B_n = S_n T_n")
        with st.expander("Simulation Information", expanded=False):
            st.markdown("""
            This simulation generates the eigenvalue distribution of B_n as n→∞, where:
            - B_n = (1/n)XX^T with X being a p×n matrix
            - p/n → y as n→∞
            - The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1)
            """)
        
        col_eigen1, col_eigen2 = st.columns([1, 2])
        with col_eigen1:
            beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen")
            y_eigen = st.number_input("y", value=1.0, key="y_eigen")
            z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen")
            n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
            sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
            
            # Add comparison option
            show_theoretical = st.checkbox("Show theoretical boundaries", value=True)
            show_empirical_stats = st.checkbox("Show empirical statistics", value=True)

        if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"):
            with col_eigen2:
                # Generate the eigenvalue distribution
                fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed)
                
                # If requested, compute and add theoretical boundaries
                if show_theoretical:
                    # Calculate min and max eigenvalues using the support boundary functions
                    betas = np.array([beta_eigen])
                    min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5)
                    
                    # Add vertical lines for boundaries
                    fig_eigen.add_vline(
                        x=min_eig[0], 
                        line=dict(color="red", width=2, dash="dash"),
                        annotation_text="Min theoretical",
                        annotation_position="top right"
                    )
                    fig_eigen.add_vline(
                        x=max_eig[0], 
                        line=dict(color="red", width=2, dash="dash"),
                        annotation_text="Max theoretical",
                        annotation_position="top left"
                    )
                
                # Display the plot
                st.plotly_chart(fig_eigen, use_container_width=True)
                
                # Add comparison of empirical vs theoretical bounds
                if show_theoretical and show_empirical_stats:
                    empirical_min = eigenvalues.min()
                    empirical_max = eigenvalues.max()
                    
                    st.markdown("### Comparison of Empirical vs Theoretical Bounds")
                    col1, col2, col3 = st.columns(3)
                    with col1:
                        st.metric("Theoretical Min", f"{min_eig[0]:.4f}")
                        st.metric("Theoretical Max", f"{max_eig[0]:.4f}")
                        st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.4f}")
                    with col2:
                        st.metric("Empirical Min", f"{empirical_min:.4f}")
                        st.metric("Empirical Max", f"{empirical_max:.4f}")
                        st.metric("Empirical Width", f"{empirical_max - empirical_min:.4f}")
                    with col3:
                        st.metric("Min Difference", f"{empirical_min - min_eig[0]:.4f}")
                        st.metric("Max Difference", f"{empirical_max - max_eig[0]:.4f}")
                        st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.4f}")
                
                # Display additional statistics
                if show_empirical_stats:
                    st.markdown("### Eigenvalue Statistics")
                    col1, col2 = st.columns(2)
                    with col1:
                        st.metric("Mean", f"{np.mean(eigenvalues):.4f}")
                        st.metric("Median", f"{np.median(eigenvalues):.4f}")
                    with col2:
                        st.metric("Standard Deviation", f"{np.std(eigenvalues):.4f}")
                        st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.4f}")

# ----- Tab 3: Differential Analysis -----
with tab3:
    st.header("Differential Analysis vs. β")
    with st.expander("Description", expanded=False):
        st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.")
    
    col1, col2 = st.columns([1, 2])
    with col1:
        z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff")
        y_diff = st.number_input("y", value=1.0, key="y_diff")
        z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff")
        z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff")
        
        diff_method_type = st.radio(
            "Boundary Calculation Method",
            ["Eigenvalue Method", "Discriminant Method"],
            index=0,
            key="diff_method_type"
        )
        
        with st.expander("Resolution Settings", expanded=False):
            if diff_method_type == "Eigenvalue Method":
                beta_steps_diff = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, 
                                         key="beta_steps_diff_eigen")
                diff_n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, 
                                        step=100, key="diff_n_samples")
                diff_seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1,
                                     key="diff_seeds")
            else:
                beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, 
                                         key="beta_steps_diff")
                z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, 
                                      step=1000, key="z_steps_diff")
        
        # Add options for curve selection
        st.subheader("Curves to Analyze")
        analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True)
        analyze_high_y = st.checkbox("High y Expression", value=False)
        analyze_alt_low = st.checkbox("Low y Expression", value=False)

    if st.button("Compute Differentials", key="tab3_button"):
        with col2:
            use_eigenvalue_method_diff = (diff_method_type == "Eigenvalue Method")
            
            if use_eigenvalue_method_diff:
                betas_diff = np.linspace(0, 1, beta_steps_diff)
                st.info("Computing eigenvalue support boundaries. This may take a moment...")
                lower_vals, upper_vals = compute_eigenvalue_support_boundaries(
                    z_a_diff, y_diff, betas_diff, diff_n_samples, diff_seeds)
            else:
                betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds(
                    z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff)
            
            # Create figure
            fig_diff = go.Figure()
            
            if analyze_upper_lower:
                diff_curve = upper_vals - lower_vals
                d1 = np.gradient(diff_curve, betas_diff)
                d2 = np.gradient(d1, betas_diff)
                
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines", 
                                name="Upper-Lower Difference", line=dict(color="magenta", width=2)))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", 
                                name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash')))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", 
                                name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot')))

            if analyze_high_y:
                high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff)
                d1 = np.gradient(high_y_curve, betas_diff)
                d2 = np.gradient(d1, betas_diff)
                
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines", 
                                name="High y", line=dict(color="green", width=2)))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", 
                                name="High y d/dβ", line=dict(color="green", dash='dash')))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", 
                                name="High y d²/dβ²", line=dict(color="green", dash='dot')))

            if analyze_alt_low:
                alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff)
                d1 = np.gradient(alt_low_curve, betas_diff)
                d2 = np.gradient(d1, betas_diff)
                
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines", 
                                name="Low y", line=dict(color="orange", width=2)))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", 
                                name="Low y d/dβ", line=dict(color="orange", dash='dash')))
                fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", 
                                name="Low y d²/dβ²", line=dict(color="orange", dash='dot')))

            fig_diff.update_layout(
                title="Differential Analysis vs. β" + 
                      (" (Eigenvalue Method)" if use_eigenvalue_method_diff else " (Discriminant Method)"),
                xaxis_title="β",
                yaxis_title="Value",
                hovermode="x unified",
                showlegend=True,
                legend=dict(
                    yanchor="top",
                    y=0.99,
                    xanchor="left",
                    x=0.01
                )
            )
            st.plotly_chart(fig_diff, use_container_width=True)
            
            with st.expander("Curve Types", expanded=False):
                st.markdown("""
                - Solid lines: Original curves
                - Dashed lines: First derivatives (d/dβ)
                - Dotted lines: Second derivatives (d²/dβ²)
                """)