File size: 165,618 Bytes
a60f1c0
 
 
 
 
 
a1ed77d
a60f1c0
 
6384d58
8c52eff
a1ed77d
 
 
 
 
 
7fa25f7
efb47b3
 
4d9b5c3
 
 
a74a30d
 
a566db2
 
84e165d
27f90be
16ed767
b37a702
a60f1c0
b37a702
8c52eff
 
 
 
7513911
a60f1c0
 
 
 
 
b37a702
 
 
 
 
 
 
 
4d8869d
 
b37a702
4d8869d
 
b37a702
 
4d8869d
 
b37a702
08bd0cf
4d8869d
b37a702
08bd0cf
b37a702
a60f1c0
 
 
 
 
 
57cb1ac
 
a60f1c0
 
 
 
87de8af
a60f1c0
 
 
8ce2887
 
7513911
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
473c7a8
efb47b3
 
87de8af
e509f96
473c7a8
e509f96
 
 
 
 
bc15b27
 
 
 
efb47b3
a60f1c0
b37a702
a60f1c0
f7bff1c
b37a702
 
2af44a9
b37a702
 
 
 
 
 
 
 
f7bff1c
 
 
 
 
 
 
 
 
 
 
 
ed262cf
 
 
 
 
 
 
 
f7bff1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed262cf
 
 
 
f7bff1c
 
 
 
 
 
 
8c52eff
 
 
 
 
 
b37a702
a2d2271
 
373b768
 
 
 
 
 
a2d2271
b37a702
a2d2271
16ed767
 
 
 
 
 
 
a2d2271
b37a702
a2d2271
16ed767
 
 
 
efb47b3
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce2887
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a60f1c0
 
 
473c7a8
eb8c873
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
 
473c7a8
eb8c873
a60f1c0
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efb47b3
eb8c873
473c7a8
eb8c873
 
 
 
473c7a8
 
 
 
 
 
 
 
efb47b3
473c7a8
 
 
 
 
 
 
 
 
b37a702
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
 
 
 
 
 
 
 
 
 
 
a7058dd
 
 
 
66c3b07
 
 
 
 
 
473c7a8
66c3b07
473c7a8
 
 
 
 
 
 
 
 
 
66c3b07
 
 
 
 
 
a7058dd
 
473c7a8
a7058dd
66c3b07
 
 
 
a7058dd
 
66c3b07
 
 
 
 
473c7a8
8ce2887
66c3b07
8ce2887
473c7a8
 
a7058dd
473c7a8
 
 
 
 
66c3b07
 
473c7a8
 
 
 
 
66c3b07
 
 
 
 
 
 
 
 
 
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c873
473c7a8
 
 
76771b5
 
 
 
5cfd2b7
76771b5
5cfd2b7
 
 
 
473c7a8
5cfd2b7
 
76771b5
 
 
 
5cfd2b7
76771b5
473c7a8
 
 
 
76771b5
 
 
473c7a8
66c3b07
473c7a8
66c3b07
 
473c7a8
5cfd2b7
473c7a8
 
5cfd2b7
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
473c7a8
66c3b07
473c7a8
66c3b07
 
 
 
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
 
473c7a8
 
 
 
 
66c3b07
 
473c7a8
 
76771b5
 
a566db2
473c7a8
66c3b07
 
b37a702
66c3b07
473c7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66c3b07
473c7a8
 
 
 
 
 
 
 
 
66c3b07
 
 
473c7a8
eb8c873
473c7a8
eb8c873
a60f1c0
 
a2d2271
a60f1c0
eb8c873
 
 
 
473c7a8
66c3b07
 
eb8c873
 
 
473c7a8
a60f1c0
473c7a8
eb8c873
a60f1c0
 
eb8c873
473c7a8
66c3b07
 
 
 
 
 
 
 
b37a702
eb8c873
 
 
473c7a8
a60f1c0
eb8c873
b37a702
 
 
 
 
 
66c3b07
b37a702
 
 
 
 
 
 
 
66c3b07
b37a702
a2d2271
b37a702
 
 
 
 
 
 
 
 
 
 
ed262cf
 
 
 
 
 
bb26972
ed262cf
 
 
 
 
 
 
 
 
 
b37a702
 
 
 
eb8c873
 
473c7a8
eb8c873
 
66c3b07
 
eb8c873
 
 
 
 
 
efb47b3
87de8af
8c52eff
b37a702
 
 
8c52eff
 
 
 
 
 
 
 
 
 
f7bff1c
8c52eff
 
f7bff1c
8c52eff
 
f7bff1c
8c52eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37a702
 
8c52eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37a702
f1b971e
 
8c52eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1b971e
8c52eff
 
b37a702
ed262cf
3380de9
b37a702
a1ed77d
 
 
 
 
 
 
8c52eff
 
b37a702
 
 
 
f1b971e
b37a702
 
 
a1ed77d
b37a702
 
 
8c52eff
 
 
 
 
 
 
 
 
 
 
b37a702
3380de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed262cf
 
3380de9
ed262cf
 
3380de9
 
 
ed262cf
 
 
f7bff1c
3380de9
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
ed262cf
 
 
 
 
 
a1ed77d
ed262cf
3380de9
 
 
 
 
 
a1ed77d
ed262cf
 
 
 
 
3380de9
 
 
 
 
ed262cf
3380de9
ed262cf
 
3380de9
 
ed262cf
 
8c52eff
ed262cf
3380de9
ed262cf
 
 
3380de9
 
 
 
f1b971e
 
 
 
3380de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed262cf
f1b971e
ed262cf
3380de9
ed262cf
f7bff1c
 
 
 
 
 
 
f1b971e
 
3380de9
f1b971e
 
3380de9
ed262cf
 
3380de9
 
 
 
 
 
 
 
 
 
 
 
 
 
ed262cf
 
 
 
 
f7bff1c
3380de9
 
ed262cf
 
 
 
 
 
 
 
3380de9
 
 
ed262cf
 
3380de9
ed262cf
 
3380de9
ed262cf
 
3380de9
ed262cf
3380de9
 
ed262cf
 
3380de9
 
ed262cf
 
3380de9
ed262cf
 
3380de9
 
 
 
 
 
 
 
 
 
 
ed262cf
 
3380de9
 
 
 
ed262cf
 
3380de9
ed262cf
 
 
 
 
f7bff1c
3380de9
 
ed262cf
 
 
 
 
 
3380de9
 
 
ed262cf
 
 
3380de9
ed262cf
 
3380de9
ed262cf
 
3380de9
ed262cf
3380de9
 
ed262cf
 
3380de9
 
ed262cf
 
3380de9
ed262cf
 
3380de9
 
 
 
 
 
 
 
 
 
 
ed262cf
 
3380de9
 
 
 
ed262cf
b37a702
3380de9
a1ed77d
3380de9
 
 
 
 
 
 
 
f7bff1c
3380de9
 
 
a1ed77d
3380de9
 
 
 
 
8c52eff
3380de9
 
8c52eff
3380de9
 
 
 
 
8c52eff
3380de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ed77d
 
3380de9
b37a702
ed262cf
f7bff1c
b37a702
3380de9
8c52eff
 
 
f7bff1c
 
 
 
 
 
 
ed262cf
b37a702
 
8c52eff
b37a702
 
8c52eff
 
4d8869d
8c52eff
 
 
 
 
 
 
 
 
4d8869d
8c52eff
 
4d8869d
8c52eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8869d
8c52eff
 
4d8869d
8c52eff
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8869d
8c52eff
 
 
 
4d8869d
8c52eff
 
 
4d8869d
8c52eff
 
4d8869d
8c52eff
 
 
4d8869d
 
8c52eff
4d8869d
742dc94
 
 
 
 
 
 
 
 
 
 
 
 
 
365463e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
742dc94
4d8869d
365463e
 
 
 
 
 
 
 
 
8c52eff
 
 
 
365463e
 
8c52eff
 
365463e
742dc94
f1b971e
742dc94
365463e
742dc94
f1b971e
365463e
 
 
f1b971e
365463e
f1b971e
365463e
f1b971e
742dc94
8c52eff
742dc94
 
8c52eff
 
 
365463e
 
742dc94
 
 
 
 
 
 
 
 
 
365463e
 
 
 
 
742dc94
365463e
 
 
8c52eff
742dc94
8c52eff
 
 
742dc94
365463e
 
8c52eff
 
742dc94
8c52eff
 
f1b971e
8c52eff
 
 
742dc94
f1b971e
365463e
742dc94
 
365463e
742dc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365463e
742dc94
 
365463e
742dc94
 
8c52eff
742dc94
 
 
 
365463e
742dc94
 
 
 
 
365463e
742dc94
 
 
 
 
365463e
742dc94
365463e
742dc94
 
365463e
 
8c52eff
742dc94
8c52eff
 
 
742dc94
f1b971e
742dc94
365463e
742dc94
 
 
 
 
365463e
742dc94
 
 
365463e
742dc94
 
 
 
 
 
 
 
 
365463e
742dc94
 
 
365463e
742dc94
 
 
 
8c52eff
742dc94
365463e
742dc94
365463e
742dc94
 
 
365463e
742dc94
 
f1b971e
 
742dc94
 
365463e
742dc94
 
 
 
 
 
 
 
 
 
 
 
f1b971e
742dc94
 
 
 
365463e
 
742dc94
 
 
365463e
8c52eff
742dc94
 
 
 
 
 
 
 
 
 
 
 
8c52eff
 
 
 
f1b971e
 
365463e
742dc94
 
 
8c52eff
 
 
 
365463e
8c52eff
742dc94
 
365463e
742dc94
 
 
 
 
 
8c52eff
 
365463e
742dc94
8c52eff
 
 
 
365463e
8c52eff
 
365463e
8c52eff
 
 
 
 
365463e
742dc94
8c52eff
 
 
 
 
 
 
 
 
 
 
 
365463e
 
742dc94
 
 
 
 
 
 
 
 
 
 
 
8c52eff
365463e
742dc94
 
8c52eff
742dc94
365463e
8c52eff
 
365463e
 
 
 
 
 
742dc94
 
 
365463e
 
742dc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365463e
 
 
 
 
742dc94
365463e
 
 
 
 
 
742dc94
365463e
 
 
 
742dc94
365463e
 
 
742dc94
 
365463e
742dc94
365463e
8c52eff
365463e
 
 
 
 
 
 
 
742dc94
 
365463e
 
 
 
 
 
 
 
 
742dc94
365463e
 
 
742dc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365463e
 
 
 
 
 
 
742dc94
 
8c52eff
365463e
 
 
 
742dc94
365463e
 
 
 
 
742dc94
365463e
 
 
 
 
 
 
 
 
742dc94
 
 
 
 
 
365463e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
742dc94
 
365463e
 
 
 
 
 
 
 
 
 
 
 
742dc94
365463e
 
742dc94
365463e
 
 
 
 
742dc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365463e
 
742dc94
365463e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
742dc94
 
365463e
 
 
 
 
 
742dc94
365463e
 
742dc94
 
365463e
 
 
 
 
 
 
 
 
 
 
742dc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
 
742dc94
 
 
 
 
 
 
 
 
 
 
 
 
 
365463e
8c52eff
 
 
 
 
 
 
365463e
742dc94
365463e
 
 
8c52eff
 
 
 
 
 
 
 
 
 
 
 
 
 
3380de9
 
8c52eff
 
742dc94
 
8c52eff
 
742dc94
8c52eff
742dc94
 
 
365463e
8c52eff
 
742dc94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365463e
8c52eff
365463e
 
742dc94
 
 
 
 
8c52eff
742dc94
 
365463e
 
 
 
 
 
 
742dc94
 
 
 
 
 
 
365463e
 
 
742dc94
 
 
 
 
 
 
 
 
365463e
 
 
 
 
 
742dc94
 
 
 
 
 
 
 
8c52eff
 
 
 
 
4d8869d
 
742dc94
365463e
3380de9
 
 
b37a702
 
 
87de8af
473c7a8
1ca7717
473c7a8
1ca7717
 
a60f1c0
 
1ca7717
 
473c7a8
 
 
 
 
 
 
 
1ca7717
 
473c7a8
1ca7717
 
a60f1c0
 
1ca7717
 
473c7a8
 
 
 
 
 
 
 
1ca7717
 
473c7a8
1ca7717
 
a60f1c0
 
1ca7717
 
473c7a8
 
 
 
 
 
 
 
a2d2271
87de8af
b37a702
87de8af
473c7a8
e6b6548
473c7a8
e6b6548
 
a60f1c0
e6b6548
 
ce399c7
e6b6548
 
 
 
a60f1c0
66c3b07
 
57cb1ac
473c7a8
a60f1c0
 
e6b6548
 
87de8af
a60f1c0
e6b6548
 
 
 
 
a60f1c0
e6b6548
 
87de8af
e6b6548
a60f1c0
e6b6548
 
 
 
 
 
 
a60f1c0
 
 
e6b6548
 
 
 
 
 
 
 
 
87de8af
e6b6548
 
 
 
 
 
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
e6b6548
8ce2887
e6b6548
 
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
e6b6548
8ce2887
e6b6548
 
473c7a8
8ce2887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b6548
8ce2887
e6b6548
a60f1c0
f7bff1c
66c3b07
 
 
a60f1c0
ed262cf
 
 
 
 
 
eb8c873
f7bff1c
eb8c873
f7bff1c
eb8c873
f7bff1c
 
eb8c873
ed262cf
7fa25f7
f7bff1c
7fa25f7
f7bff1c
7fa25f7
f7bff1c
7fa25f7
f7bff1c
7fa25f7
f7bff1c
7fa25f7
f7bff1c
 
a2d2271
87de8af
ed262cf
87de8af
473c7a8
b37a702
e81fdea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15b9748
b37a702
 
57cb1ac
b37a702
473c7a8
b37a702
66c3b07
b37a702
66c3b07
b37a702
66c3b07
b37a702
 
 
 
473c7a8
b37a702
473c7a8
 
 
 
 
 
 
 
b37a702
473c7a8
b37a702
 
 
 
 
 
 
 
473c7a8
b37a702
 
473c7a8
b37a702
473c7a8
b37a702
 
 
 
 
473c7a8
 
b37a702
 
473c7a8
 
57cb1ac
b37a702
 
 
 
ed262cf
b37a702
 
 
 
 
 
 
 
 
 
f7bff1c
b37a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed262cf
f7bff1c
b37a702
ed262cf
b37a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed262cf
 
 
b37a702
 
 
ed262cf
b37a702
 
 
ed262cf
b37a702
 
ed262cf
b37a702
ed262cf
 
 
 
 
 
 
 
 
 
 
f7bff1c
 
ed262cf
b37a702
ed262cf
b37a702
 
f7bff1c
 
 
 
 
 
 
ed262cf
f7bff1c
ed262cf
 
 
 
 
f7bff1c
 
 
ed262cf
f7bff1c
 
 
ed262cf
f7bff1c
ed262cf
f7bff1c
 
 
 
 
 
ed262cf
 
 
 
 
 
 
f7bff1c
 
 
 
ed262cf
f7bff1c
ed262cf
f7bff1c
 
 
 
 
 
 
 
b37a702
 
 
 
 
ed262cf
b37a702
 
 
 
 
 
 
 
ed262cf
b37a702
 
 
f7bff1c
ed262cf
b37a702
 
08bd0cf
b37a702
 
 
08bd0cf
f7bff1c
 
b37a702
 
f7bff1c
b37a702
f7bff1c
b37a702
 
 
611f47d
473c7a8
8ce2887
473c7a8
 
8ce2887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473c7a8
87de8af
ed262cf
87de8af
473c7a8
8ce2887
e81fdea
8ce2887
e81fdea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ed77d
 
b37a702
8c52eff
 
8ce2887
8c52eff
2af44a9
b37a702
a60f1c0
b37a702
a60f1c0
8c52eff
ed262cf
8c52eff
 
ed262cf
8c52eff
ed262cf
8c52eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2af44a9
 
b37a702
8c52eff
ed262cf
 
b37a702
 
8c52eff
 
 
 
 
 
 
 
ed262cf
b37a702
ed262cf
 
 
 
 
b37a702
 
ed262cf
 
 
 
b37a702
f7bff1c
8c52eff
f7bff1c
ed262cf
b37a702
 
 
8c52eff
ed262cf
 
 
 
 
 
b37a702
f7bff1c
 
ed262cf
 
b37a702
 
ed262cf
 
 
b37a702
 
2af44a9
ed262cf
 
8c52eff
ed262cf
 
 
 
8c52eff
 
ed262cf
 
 
 
 
2af44a9
 
8ef7489
365463e
 
b37a702
 
8c52eff
365463e
b37a702
8c52eff
365463e
4d8869d
 
365463e
 
 
4d8869d
 
8c52eff
365463e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
365463e
 
8c52eff
742dc94
f1b971e
 
742dc94
 
f1b971e
742dc94
f1b971e
 
365463e
f1b971e
365463e
f1b971e
 
8c52eff
365463e
 
 
 
f1b971e
8c52eff
 
 
365463e
8c52eff
365463e
 
 
 
4d8869d
8c52eff
 
4d8869d
 
8c52eff
 
365463e
8c52eff
365463e
 
 
f1b971e
 
 
8c52eff
365463e
8c52eff
 
 
365463e
 
 
 
 
 
8c52eff
365463e
8c52eff
 
 
 
365463e
8c52eff
 
 
 
365463e
f1b971e
365463e
 
8c52eff
365463e
 
8c52eff
4d8869d
 
365463e
 
8c52eff
4d8869d
 
2af44a9
365463e
 
742dc94
 
 
 
365463e
 
 
 
742dc94
365463e
742dc94
 
 
 
 
 
 
 
 
 
365463e
 
 
 
 
 
 
 
 
742dc94
365463e
742dc94
 
365463e
742dc94
 
 
 
 
 
 
 
 
 
2af44a9
 
 
8c52eff
8ce2887
b37a702
8ce2887
b3a513b
8ce2887
 
 
 
 
 
 
 
 
 
 
 
8c52eff
8ce2887
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
8ce2887
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
8ce2887
b37a702
8ce2887
b37a702
8ce2887
 
 
 
 
 
 
 
 
 
 
 
 
8c52eff
ed262cf
b37a702
8ce2887
b37a702
 
e81fdea
 
b37a702
 
 
 
 
 
 
8ce2887
b37a702
 
ed262cf
b37a702
ed262cf
 
b37a702
 
8c52eff
b37a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce2887
b37a702
2af44a9
8c52eff
ed262cf
8c52eff
 
 
 
 
 
 
ed262cf
 
 
 
 
 
2af44a9
 
8ce2887
8c52eff
 
f7bff1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2af44a9
f7bff1c
 
 
 
e81fdea
 
 
 
 
 
 
 
f7bff1c
 
 
 
 
e81fdea
 
 
 
 
 
f7bff1c
 
 
 
 
e81fdea
 
 
 
 
 
 
 
 
 
 
f7bff1c
 
 
2af44a9
 
8c52eff
 
 
 
 
 
 
 
 
 
 
 
 
 
ed262cf
 
8c52eff
 
 
 
 
 
f7bff1c
 
 
 
 
ed262cf
2af44a9
 
f7bff1c
8ce2887
 
 
e81fdea
 
8ce2887
e81fdea
 
 
 
 
08bd0cf
e81fdea
 
08bd0cf
e81fdea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08bd0cf
e81fdea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce2887
 
 
a2d2271
473c7a8
365463e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
import os
import argparse
import logging
import pickle
import threading
import time
import warnings
from datetime import datetime, timedelta
from collections import defaultdict
import csv 
import json

# Suppress warnings for cleaner output
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning, module='umap')
warnings.filterwarnings('ignore', category=UserWarning, module='sklearn')

import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots

from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN, KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, r2_score
from scipy.interpolate import interp1d, RBFInterpolator
import statsmodels.api as sm
import requests
import tempfile
import shutil
import xarray as xr

# NEW: Advanced ML imports
try:
    import umap.umap_ as umap
    UMAP_AVAILABLE = True
except ImportError:
    UMAP_AVAILABLE = False
    print("UMAP not available - clustering features limited")

# Optional CNN imports with robust error handling
CNN_AVAILABLE = False
try:
    # Set environment variables before importing TensorFlow
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # Suppress TensorFlow warnings
    import tensorflow as tf
    from tensorflow.keras import layers, models
    # Test if TensorFlow actually works
    tf.config.set_visible_devices([], 'GPU')  # Disable GPU to avoid conflicts
    CNN_AVAILABLE = True
    print("TensorFlow successfully loaded - CNN features enabled")
except Exception as e:
    CNN_AVAILABLE = False
    print(f"TensorFlow not available - CNN features disabled: {str(e)[:100]}...")

try:
    import cdsapi
    CDSAPI_AVAILABLE = True
except ImportError:
    CDSAPI_AVAILABLE = False

import tropycal.tracks as tracks

# -----------------------------
# Configuration and Setup
# -----------------------------
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)

# Remove argument parser to simplify startup
DATA_PATH = '/tmp/typhoon_data' if 'SPACE_ID' in os.environ else tempfile.gettempdir()

# Ensure directory exists and is writable
try:
    os.makedirs(DATA_PATH, exist_ok=True)
    # Test write permissions
    test_file = os.path.join(DATA_PATH, 'test_write.txt')
    with open(test_file, 'w') as f:
        f.write('test')
    os.remove(test_file)
    logging.info(f"Data directory is writable: {DATA_PATH}")
except Exception as e:
    logging.warning(f"Data directory not writable, using temp dir: {e}")
    DATA_PATH = tempfile.mkdtemp()
    logging.info(f"Using temporary directory: {DATA_PATH}")

# Update file paths
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv')

# IBTrACS settings
BASIN_FILES = {
    'EP': 'ibtracs.EP.list.v04r01.csv',
    'NA': 'ibtracs.NA.list.v04r01.csv',
    'WP': 'ibtracs.WP.list.v04r01.csv'
}
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/'
LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl')
CACHE_EXPIRY_DAYS = 1

# -----------------------------
# ENHANCED: Color Maps and Standards with TD Support
# -----------------------------
# Enhanced color mapping with TD support (for Plotly)
enhanced_color_map = {
    'Unknown': 'rgb(200, 200, 200)',
    'Tropical Depression': 'rgb(128, 128, 128)',  # Gray for TD
    'Tropical Storm': 'rgb(0, 0, 255)',
    'C1 Typhoon': 'rgb(0, 255, 255)',
    'C2 Typhoon': 'rgb(0, 255, 0)',
    'C3 Strong Typhoon': 'rgb(255, 255, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
    'C5 Super Typhoon': 'rgb(255, 0, 0)'
}

# Matplotlib-compatible color mapping (hex colors)
matplotlib_color_map = {
    'Unknown': '#C8C8C8',
    'Tropical Depression': '#808080',  # Gray for TD
    'Tropical Storm': '#0000FF',       # Blue
    'C1 Typhoon': '#00FFFF',          # Cyan
    'C2 Typhoon': '#00FF00',          # Green
    'C3 Strong Typhoon': '#FFFF00',   # Yellow
    'C4 Very Strong Typhoon': '#FFA500', # Orange
    'C5 Super Typhoon': '#FF0000'     # Red
}

# Taiwan color mapping
taiwan_color_map = {
    'Tropical Depression': '#808080',  # Gray
    'Mild Typhoon': '#FFFF00',         # Yellow
    'Medium Typhoon': '#FFA500',       # Orange
    'Strong Typhoon': '#FF0000'        # Red
}

def rgb_string_to_hex(rgb_string):
    """Convert 'rgb(r,g,b)' string to hex color for matplotlib"""
    try:
        # Extract numbers from 'rgb(r,g,b)' format
        import re
        numbers = re.findall(r'\d+', rgb_string)
        if len(numbers) == 3:
            r, g, b = map(int, numbers)
            return f'#{r:02x}{g:02x}{b:02x}'
        else:
            return '#808080'  # Default gray
    except:
        return '#808080'  # Default gray

def get_matplotlib_color(category):
    """Get matplotlib-compatible color for a storm category"""
    return matplotlib_color_map.get(category, '#808080')

def get_taiwan_color(category):
    """Get Taiwan standard color for a storm category"""
    return taiwan_color_map.get(category, '#808080')

# Cluster colors for route visualization
CLUSTER_COLORS = [
    '#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7',
    '#DDA0DD', '#98D8C8', '#F7DC6F', '#BB8FCE', '#85C1E9',
    '#F8C471', '#82E0AA', '#F1948A', '#85C1E9', '#D2B4DE'
]

# Route prediction colors
ROUTE_COLORS = [
    '#FF0066', '#00FF66', '#6600FF', '#FF6600', '#0066FF',
    '#FF00CC', '#00FFCC', '#CC00FF', '#CCFF00', '#00CCFF'
]

# Original color map for backward compatibility
color_map = {
    'C5 Super Typhoon': 'rgb(255, 0, 0)',
    'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
    'C3 Strong Typhoon': 'rgb(255, 255, 0)',
    'C2 Typhoon': 'rgb(0, 255, 0)',
    'C1 Typhoon': 'rgb(0, 255, 255)',
    'Tropical Storm': 'rgb(0, 0, 255)',
    'Tropical Depression': 'rgb(128, 128, 128)'
}

atlantic_standard = {
    'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
    'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
    'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
    'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
    'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
    'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}

taiwan_standard = {
    'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'},
    'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'},
    'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'},
    'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}

# -----------------------------
# Utility Functions for HF Spaces
# -----------------------------

def safe_file_write(file_path, data_frame, backup_dir=None):
    """Safely write DataFrame to CSV with backup and error handling"""
    try:
        # Create directory if it doesn't exist
        os.makedirs(os.path.dirname(file_path), exist_ok=True)
        
        # Try to write to a temporary file first
        temp_path = file_path + '.tmp'
        data_frame.to_csv(temp_path, index=False)
        
        # If successful, rename to final file
        os.rename(temp_path, file_path)
        logging.info(f"Successfully saved {len(data_frame)} records to {file_path}")
        return True
        
    except PermissionError as e:
        logging.warning(f"Permission denied writing to {file_path}: {e}")
        if backup_dir:
            try:
                backup_path = os.path.join(backup_dir, os.path.basename(file_path))
                data_frame.to_csv(backup_path, index=False)
                logging.info(f"Saved to backup location: {backup_path}")
                return True
            except Exception as backup_e:
                logging.error(f"Failed to save to backup location: {backup_e}")
        return False
        
    except Exception as e:
        logging.error(f"Error saving file {file_path}: {e}")
        # Clean up temp file if it exists
        temp_path = file_path + '.tmp'
        if os.path.exists(temp_path):
            try:
                os.remove(temp_path)
            except:
                pass
        return False

def get_fallback_data_dir():
    """Get a fallback data directory that's guaranteed to be writable"""
    fallback_dirs = [
        tempfile.gettempdir(),
        '/tmp',
        os.path.expanduser('~'),
        os.getcwd()
    ]
    
    for directory in fallback_dirs:
        try:
            test_dir = os.path.join(directory, 'typhoon_fallback')
            os.makedirs(test_dir, exist_ok=True)
            test_file = os.path.join(test_dir, 'test.txt')
            with open(test_file, 'w') as f:
                f.write('test')
            os.remove(test_file)
            return test_dir
        except:
            continue
    
    # If all else fails, use current directory
    return os.getcwd()

# -----------------------------
# ONI and Typhoon Data Functions
# -----------------------------

def download_oni_file(url, filename):
    """Download ONI file with retry logic"""
    max_retries = 3
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=30)
            response.raise_for_status()
            with open(filename, 'wb') as f:
                f.write(response.content)
            return True
        except Exception as e:
            logging.warning(f"Attempt {attempt + 1} failed to download ONI: {e}")
            if attempt < max_retries - 1:
                time.sleep(2 ** attempt)  # Exponential backoff
            else:
                logging.error(f"Failed to download ONI after {max_retries} attempts")
                return False

def convert_oni_ascii_to_csv(input_file, output_file):
    """Convert ONI ASCII format to CSV"""
    data = defaultdict(lambda: [''] * 12)
    season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5,
                       'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11}
    
    try:
        with open(input_file, 'r') as f:
            lines = f.readlines()[1:]  # Skip header
            for line in lines:
                parts = line.split()
                if len(parts) >= 4:
                    season, year, anom = parts[0], parts[1], parts[-1]
                    if season in season_to_month:
                        month = season_to_month[season]
                        if season == 'DJF':
                            year = str(int(year)-1)
                        data[year][month-1] = anom
        
        # Write to CSV with safe write
        df = pd.DataFrame(data).T.reset_index()
        df.columns = ['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
        df = df.sort_values('Year').reset_index(drop=True)
        
        return safe_file_write(output_file, df, get_fallback_data_dir())
        
    except Exception as e:
        logging.error(f"Error converting ONI file: {e}")
        return False

def update_oni_data():
    """Update ONI data with error handling"""
    url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
    temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
    input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
    output_file = ONI_DATA_PATH
    
    try:
        if download_oni_file(url, temp_file):
            if not os.path.exists(input_file) or not os.path.exists(output_file):
                os.rename(temp_file, input_file)
                convert_oni_ascii_to_csv(input_file, output_file)
            else:
                os.remove(temp_file)
        else:
            # Create fallback ONI data if download fails
            logging.warning("Creating fallback ONI data")
            create_fallback_oni_data(output_file)
    except Exception as e:
        logging.error(f"Error updating ONI data: {e}")
        create_fallback_oni_data(output_file)

def create_fallback_oni_data(output_file):
    """Create minimal ONI data for testing"""
    years = range(2000, 2026)  # Extended to include 2025
    months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
    
    # Create synthetic ONI data
    data = []
    for year in years:
        row = [year]
        for month in months:
            # Generate some realistic ONI values
            value = np.random.normal(0, 1) * 0.5
            row.append(f"{value:.2f}")
        data.append(row)
    
    df = pd.DataFrame(data, columns=['Year'] + months)
    safe_file_write(output_file, df, get_fallback_data_dir())

# -----------------------------
# FIXED: IBTrACS Data Loading
# -----------------------------

def download_ibtracs_file(basin, force_download=False):
    """Download specific basin file from IBTrACS"""
    filename = BASIN_FILES[basin]
    local_path = os.path.join(DATA_PATH, filename)
    url = IBTRACS_BASE_URL + filename
    
    # Check if file exists and is recent (less than 7 days old)
    if os.path.exists(local_path) and not force_download:
        file_age = time.time() - os.path.getmtime(local_path)
        if file_age < 7 * 24 * 3600:  # 7 days
            logging.info(f"Using cached {basin} basin file")
            return local_path
    
    try:
        logging.info(f"Downloading {basin} basin file from {url}")
        response = requests.get(url, timeout=60)
        response.raise_for_status()
        
        # Ensure directory exists
        os.makedirs(os.path.dirname(local_path), exist_ok=True)
        
        with open(local_path, 'wb') as f:
            f.write(response.content)
        logging.info(f"Successfully downloaded {basin} basin file")
        return local_path
    except Exception as e:
        logging.error(f"Failed to download {basin} basin file: {e}")
        return None

def examine_ibtracs_structure(file_path):
    """Examine the actual structure of an IBTrACS CSV file"""
    try:
        with open(file_path, 'r') as f:
            lines = f.readlines()
        
        # Show first 5 lines
        logging.info("First 5 lines of IBTrACS file:")
        for i, line in enumerate(lines[:5]):
            logging.info(f"Line {i}: {line.strip()}")
        
        # The first line contains the actual column headers
        # No need to skip rows for IBTrACS v04r01
        df = pd.read_csv(file_path, nrows=5)
        logging.info(f"Columns from first row: {list(df.columns)}")
        
        return list(df.columns)
    except Exception as e:
        logging.error(f"Error examining IBTrACS structure: {e}")
        return None

def load_ibtracs_csv_directly(basin='WP'):
    """Load IBTrACS data directly from CSV - FIXED VERSION"""
    filename = BASIN_FILES[basin]
    local_path = os.path.join(DATA_PATH, filename)
    
    # Download if not exists
    if not os.path.exists(local_path):
        downloaded_path = download_ibtracs_file(basin)
        if not downloaded_path:
            return None
    
    try:
        # First, examine the structure
        actual_columns = examine_ibtracs_structure(local_path)
        if not actual_columns:
            logging.error("Could not examine IBTrACS file structure")
            return None
        
        # Read IBTrACS CSV - DON'T skip any rows for v04r01
        # The first row contains proper column headers
        logging.info(f"Reading IBTrACS CSV file: {local_path}")
        df = pd.read_csv(local_path, low_memory=False)  # Don't skip any rows
        
        logging.info(f"Original columns: {list(df.columns)}")
        logging.info(f"Data shape before cleaning: {df.shape}")
        
        # Check which essential columns exist
        required_cols = ['SID', 'ISO_TIME', 'LAT', 'LON']
        available_required = [col for col in required_cols if col in df.columns]
        
        if len(available_required) < 2:
            logging.error(f"Missing critical columns. Available: {list(df.columns)}")
            return None
        
        # Clean and standardize the data with format specification
        if 'ISO_TIME' in df.columns:
            df['ISO_TIME'] = pd.to_datetime(df['ISO_TIME'], format='%Y-%m-%d %H:%M:%S', errors='coerce')
        
        # Clean numeric columns
        numeric_columns = ['LAT', 'LON', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES']
        for col in numeric_columns:
            if col in df.columns:
                df[col] = pd.to_numeric(df[col], errors='coerce')
        
        # Filter out invalid/missing critical data
        valid_rows = df['LAT'].notna() & df['LON'].notna()
        df = df[valid_rows]
        
        # Ensure LAT/LON are in reasonable ranges
        df = df[(df['LAT'] >= -90) & (df['LAT'] <= 90)]
        df = df[(df['LON'] >= -180) & (df['LON'] <= 180)]
        
        # Add basin info if missing
        if 'BASIN' not in df.columns:
            df['BASIN'] = basin
        
        # Add default columns if missing
        if 'NAME' not in df.columns:
            df['NAME'] = 'UNNAMED'
        
        if 'SEASON' not in df.columns and 'ISO_TIME' in df.columns:
            df['SEASON'] = df['ISO_TIME'].dt.year
        
        logging.info(f"Successfully loaded {len(df)} records from {basin} basin")
        return df
        
    except Exception as e:
        logging.error(f"Error reading IBTrACS CSV file: {e}")
        return None

def load_ibtracs_data_fixed():
    """Fixed version of IBTrACS data loading"""
    ibtracs_data = {}
    
    # Try to load each basin, but prioritize WP for this application
    load_order = ['WP', 'EP', 'NA']
    
    for basin in load_order:
        try:
            logging.info(f"Loading {basin} basin data...")
            df = load_ibtracs_csv_directly(basin)
            
            if df is not None and not df.empty:
                ibtracs_data[basin] = df
                logging.info(f"Successfully loaded {basin} basin with {len(df)} records")
            else:
                logging.warning(f"No data loaded for basin {basin}")
                ibtracs_data[basin] = None
                
        except Exception as e:
            logging.error(f"Failed to load basin {basin}: {e}")
            ibtracs_data[basin] = None
    
    return ibtracs_data

def load_data_fixed(oni_path, typhoon_path):
    """Fixed version of load_data function"""
    # Load ONI data
    oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [], 
                           'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [], 
                           'Oct': [], 'Nov': [], 'Dec': []})
    
    if not os.path.exists(oni_path):
        logging.warning(f"ONI data file not found: {oni_path}")
        update_oni_data()
    
    try:
        oni_data = pd.read_csv(oni_path)
        logging.info(f"Successfully loaded ONI data with {len(oni_data)} years")
    except Exception as e:
        logging.error(f"Error loading ONI data: {e}")
        update_oni_data()
        try:
            oni_data = pd.read_csv(oni_path)
        except Exception as e:
            logging.error(f"Still can't load ONI data: {e}")
    
    # Load typhoon data - NEW APPROACH
    typhoon_data = None
    
    # First, try to load from existing processed file
    if os.path.exists(typhoon_path):
        try:
            typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
            # Ensure basic columns exist and are valid
            required_cols = ['LAT', 'LON']
            if all(col in typhoon_data.columns for col in required_cols):
                if 'ISO_TIME' in typhoon_data.columns:
                    typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
                logging.info(f"Loaded processed typhoon data with {len(typhoon_data)} records")
            else:
                logging.warning("Processed typhoon data missing required columns, will reload from IBTrACS")
                typhoon_data = None
        except Exception as e:
            logging.error(f"Error loading processed typhoon data: {e}")
            typhoon_data = None
    
    # If no valid processed data, load from IBTrACS
    if typhoon_data is None or typhoon_data.empty:
        logging.info("Loading typhoon data from IBTrACS...")
        ibtracs_data = load_ibtracs_data_fixed()
        
        # Combine all available basin data, prioritizing WP
        combined_dfs = []
        for basin in ['WP', 'EP', 'NA']:
            if basin in ibtracs_data and ibtracs_data[basin] is not None:
                df = ibtracs_data[basin].copy()
                df['BASIN'] = basin
                combined_dfs.append(df)
        
        if combined_dfs:
            typhoon_data = pd.concat(combined_dfs, ignore_index=True)
            # Ensure SID has proper format
            if 'SID' not in typhoon_data.columns and 'BASIN' in typhoon_data.columns:
                # Create SID from basin and other identifiers if missing
                if 'SEASON' in typhoon_data.columns:
                    typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + 
                                         typhoon_data.index.astype(str).str.zfill(2) + 
                                         typhoon_data['SEASON'].astype(str))
                else:
                    typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + 
                                         typhoon_data.index.astype(str).str.zfill(2) + 
                                         '2000')
            
            # Save the processed data for future use
            safe_file_write(typhoon_path, typhoon_data, get_fallback_data_dir())
            logging.info(f"Combined IBTrACS data: {len(typhoon_data)} total records")
        else:
            logging.error("Failed to load any IBTrACS basin data")
            # Create minimal fallback data
            typhoon_data = create_fallback_typhoon_data()
    
    # Final validation of typhoon data
    if typhoon_data is not None:
        # Ensure required columns exist with fallback values
        required_columns = {
            'SID': 'UNKNOWN',
            'ISO_TIME': pd.Timestamp('2000-01-01'),
            'LAT': 0.0,
            'LON': 0.0,
            'USA_WIND': np.nan,
            'USA_PRES': np.nan,
            'NAME': 'UNNAMED',
            'SEASON': 2000
        }
        
        for col, default_val in required_columns.items():
            if col not in typhoon_data.columns:
                typhoon_data[col] = default_val
                logging.warning(f"Added missing column {col} with default value")
        
        # Ensure data types
        if 'ISO_TIME' in typhoon_data.columns:
            typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
        typhoon_data['LAT'] = pd.to_numeric(typhoon_data['LAT'], errors='coerce')
        typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
        typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
        typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
        
        # Remove rows with invalid coordinates
        typhoon_data = typhoon_data.dropna(subset=['LAT', 'LON'])
        
        logging.info(f"Final typhoon data: {len(typhoon_data)} records after validation")
    
    return oni_data, typhoon_data

def create_fallback_typhoon_data():
    """Create minimal fallback typhoon data - FIXED VERSION"""
    # Use proper pandas date_range instead of numpy
    dates = pd.date_range(start='2000-01-01', end='2025-12-31', freq='D')  # Extended to 2025
    storm_dates = dates[np.random.choice(len(dates), size=100, replace=False)]
    
    data = []
    for i, date in enumerate(storm_dates):
        # Create realistic WP storm tracks
        base_lat = np.random.uniform(10, 30)
        base_lon = np.random.uniform(130, 160)
        
        # Generate 20-50 data points per storm
        track_length = np.random.randint(20, 51)
        sid = f"WP{i+1:02d}{date.year}"
        
        for j in range(track_length):
            lat = base_lat + j * 0.2 + np.random.normal(0, 0.1)
            lon = base_lon + j * 0.3 + np.random.normal(0, 0.1)
            wind = max(25, 70 + np.random.normal(0, 20))
            pres = max(950, 1000 - wind + np.random.normal(0, 5))
            
            data.append({
                'SID': sid,
                'ISO_TIME': date + pd.Timedelta(hours=j*6),  # Use pd.Timedelta instead
                'NAME': f'FALLBACK_{i+1}',
                'SEASON': date.year,
                'LAT': lat,
                'LON': lon,
                'USA_WIND': wind,
                'USA_PRES': pres,
                'BASIN': 'WP'
            })
    
    df = pd.DataFrame(data)
    logging.info(f"Created fallback typhoon data with {len(df)} records")
    return df

def process_oni_data(oni_data):
    """Process ONI data into long format"""
    oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
    month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06',
                 'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'}
    oni_long['Month'] = oni_long['Month'].map(month_map)
    oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01')
    oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
    return oni_long

def process_typhoon_data(typhoon_data):
    """Process typhoon data"""
    if 'ISO_TIME' in typhoon_data.columns:
        typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
    typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
    typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
    typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
    
    logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}")
    
    typhoon_max = typhoon_data.groupby('SID').agg({
        'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first',
        'LAT':'first','LON':'first'
    }).reset_index()
    
    if 'ISO_TIME' in typhoon_max.columns:
        typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
        typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
    else:
        # Fallback if no ISO_TIME
        typhoon_max['Month'] = '01'
        typhoon_max['Year'] = typhoon_max['SEASON']
    
    typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon_enhanced)
    return typhoon_max

def merge_data(oni_long, typhoon_max):
    """Merge ONI and typhoon data"""
    return pd.merge(typhoon_max, oni_long, on=['Year','Month'])

# -----------------------------
# ENHANCED: Categorization Functions
# -----------------------------

def categorize_typhoon_enhanced(wind_speed):
    """Enhanced categorization that properly includes Tropical Depressions"""
    if pd.isna(wind_speed):
        return 'Unknown'
    
    # Convert to knots if in m/s (some datasets use m/s)
    if wind_speed < 10:  # Likely in m/s, convert to knots
        wind_speed = wind_speed * 1.94384
    
    # FIXED thresholds to include TD
    if wind_speed < 34:  # Below 34 knots = Tropical Depression
        return 'Tropical Depression'
    elif wind_speed < 64:  # 34-63 knots = Tropical Storm
        return 'Tropical Storm'
    elif wind_speed < 83:  # 64-82 knots = Category 1 Typhoon
        return 'C1 Typhoon'
    elif wind_speed < 96:  # 83-95 knots = Category 2 Typhoon
        return 'C2 Typhoon'
    elif wind_speed < 113:  # 96-112 knots = Category 3 Strong Typhoon
        return 'C3 Strong Typhoon'
    elif wind_speed < 137:  # 113-136 knots = Category 4 Very Strong Typhoon
        return 'C4 Very Strong Typhoon'
    else:  # 137+ knots = Category 5 Super Typhoon
        return 'C5 Super Typhoon'

def categorize_typhoon_taiwan(wind_speed):
    """Taiwan categorization system"""
    if pd.isna(wind_speed):
        return 'Tropical Depression'
    
    # Convert to m/s if in knots
    wind_speed = wind_speed * 0.514444
    
    if wind_speed >= 51.0:
        return 'Strong Typhoon'
    elif wind_speed >= 33.7:
        return 'Medium Typhoon'
    elif wind_speed >= 17.2:
        return 'Mild Typhoon'
    else:
        return 'Tropical Depression'

# Original function for backward compatibility
def categorize_typhoon(wind_speed):
    """Original categorize typhoon function for backward compatibility"""
    return categorize_typhoon_enhanced(wind_speed)

def classify_enso_phases(oni_value):
    """Classify ENSO phases based on ONI value"""
    if isinstance(oni_value, pd.Series):
        oni_value = oni_value.iloc[0]
    if pd.isna(oni_value):
        return 'Neutral'
    if oni_value >= 0.5:
        return 'El Nino'
    elif oni_value <= -0.5:
        return 'La Nina'
    else:
        return 'Neutral'

# -----------------------------
# FIXED: ADVANCED ML FEATURES WITH ROBUST ERROR HANDLING
# -----------------------------

def extract_storm_features(typhoon_data):
    """Extract comprehensive features for clustering analysis - FIXED VERSION"""
    try:
        if typhoon_data is None or typhoon_data.empty:
            logging.error("No typhoon data provided for feature extraction")
            return None
        
        # Basic features - ensure columns exist
        basic_features = []
        for sid in typhoon_data['SID'].unique():
            storm_data = typhoon_data[typhoon_data['SID'] == sid].copy()
            
            if len(storm_data) == 0:
                continue
            
            # Initialize feature dict with safe defaults
            features = {'SID': sid}
            
            # Wind statistics
            if 'USA_WIND' in storm_data.columns:
                wind_values = pd.to_numeric(storm_data['USA_WIND'], errors='coerce').dropna()
                if len(wind_values) > 0:
                    features['USA_WIND_max'] = wind_values.max()
                    features['USA_WIND_mean'] = wind_values.mean()
                    features['USA_WIND_std'] = wind_values.std() if len(wind_values) > 1 else 0
                else:
                    features['USA_WIND_max'] = 30
                    features['USA_WIND_mean'] = 30
                    features['USA_WIND_std'] = 0
            else:
                features['USA_WIND_max'] = 30
                features['USA_WIND_mean'] = 30
                features['USA_WIND_std'] = 0
                
            # Pressure statistics
            if 'USA_PRES' in storm_data.columns:
                pres_values = pd.to_numeric(storm_data['USA_PRES'], errors='coerce').dropna()
                if len(pres_values) > 0:
                    features['USA_PRES_min'] = pres_values.min()
                    features['USA_PRES_mean'] = pres_values.mean()
                    features['USA_PRES_std'] = pres_values.std() if len(pres_values) > 1 else 0
                else:
                    features['USA_PRES_min'] = 1000
                    features['USA_PRES_mean'] = 1000
                    features['USA_PRES_std'] = 0
            else:
                features['USA_PRES_min'] = 1000
                features['USA_PRES_mean'] = 1000
                features['USA_PRES_std'] = 0
            
            # Location statistics
            if 'LAT' in storm_data.columns and 'LON' in storm_data.columns:
                lat_values = pd.to_numeric(storm_data['LAT'], errors='coerce').dropna()
                lon_values = pd.to_numeric(storm_data['LON'], errors='coerce').dropna()
                
                if len(lat_values) > 0 and len(lon_values) > 0:
                    features['LAT_mean'] = lat_values.mean()
                    features['LAT_std'] = lat_values.std() if len(lat_values) > 1 else 0
                    features['LAT_max'] = lat_values.max()
                    features['LAT_min'] = lat_values.min()
                    features['LON_mean'] = lon_values.mean()
                    features['LON_std'] = lon_values.std() if len(lon_values) > 1 else 0
                    features['LON_max'] = lon_values.max()
                    features['LON_min'] = lon_values.min()
                    
                    # Genesis location (first valid position)
                    features['genesis_lat'] = lat_values.iloc[0]
                    features['genesis_lon'] = lon_values.iloc[0]
                    features['genesis_intensity'] = features['USA_WIND_mean']  # Use mean as fallback
                    
                    # Track characteristics
                    features['lat_range'] = lat_values.max() - lat_values.min()
                    features['lon_range'] = lon_values.max() - lon_values.min()
                    
                    # Calculate track distance
                    if len(lat_values) > 1:
                        distances = []
                        for i in range(1, len(lat_values)):
                            dlat = lat_values.iloc[i] - lat_values.iloc[i-1]
                            dlon = lon_values.iloc[i] - lon_values.iloc[i-1]
                            distances.append(np.sqrt(dlat**2 + dlon**2))
                        features['total_distance'] = sum(distances)
                        features['avg_speed'] = np.mean(distances) if distances else 0
                    else:
                        features['total_distance'] = 0
                        features['avg_speed'] = 0
                        
                    # Track curvature
                    if len(lat_values) > 2:
                        bearing_changes = []
                        for i in range(1, len(lat_values)-1):
                            dlat1 = lat_values.iloc[i] - lat_values.iloc[i-1]
                            dlon1 = lon_values.iloc[i] - lon_values.iloc[i-1]
                            dlat2 = lat_values.iloc[i+1] - lat_values.iloc[i]
                            dlon2 = lon_values.iloc[i+1] - lon_values.iloc[i]
                            
                            angle1 = np.arctan2(dlat1, dlon1)
                            angle2 = np.arctan2(dlat2, dlon2)
                            change = abs(angle2 - angle1)
                            bearing_changes.append(change)
                        
                        features['avg_curvature'] = np.mean(bearing_changes) if bearing_changes else 0
                    else:
                        features['avg_curvature'] = 0
                else:
                    # Default location values
                    features.update({
                        'LAT_mean': 20, 'LAT_std': 0, 'LAT_max': 20, 'LAT_min': 20,
                        'LON_mean': 140, 'LON_std': 0, 'LON_max': 140, 'LON_min': 140,
                        'genesis_lat': 20, 'genesis_lon': 140, 'genesis_intensity': 30,
                        'lat_range': 0, 'lon_range': 0, 'total_distance': 0,
                        'avg_speed': 0, 'avg_curvature': 0
                    })
            else:
                # Default location values if columns missing
                features.update({
                    'LAT_mean': 20, 'LAT_std': 0, 'LAT_max': 20, 'LAT_min': 20,
                    'LON_mean': 140, 'LON_std': 0, 'LON_max': 140, 'LON_min': 140,
                    'genesis_lat': 20, 'genesis_lon': 140, 'genesis_intensity': 30,
                    'lat_range': 0, 'lon_range': 0, 'total_distance': 0,
                    'avg_speed': 0, 'avg_curvature': 0
                })
            
            # Track length
            features['track_length'] = len(storm_data)
            
            # Add seasonal information
            if 'SEASON' in storm_data.columns:
                features['season'] = storm_data['SEASON'].iloc[0]
            else:
                features['season'] = 2000
                
            # Add basin information
            if 'BASIN' in storm_data.columns:
                features['basin'] = storm_data['BASIN'].iloc[0]
            elif 'SID' in storm_data.columns:
                features['basin'] = sid[:2] if len(sid) >= 2 else 'WP'
            else:
                features['basin'] = 'WP'
            
            basic_features.append(features)
        
        if not basic_features:
            logging.error("No valid storm features could be extracted")
            return None
            
        # Convert to DataFrame
        storm_features = pd.DataFrame(basic_features)
        
        # Ensure all numeric columns are properly typed
        numeric_columns = [col for col in storm_features.columns if col not in ['SID', 'basin']]
        for col in numeric_columns:
            storm_features[col] = pd.to_numeric(storm_features[col], errors='coerce').fillna(0)
        
        logging.info(f"Successfully extracted features for {len(storm_features)} storms")
        logging.info(f"Feature columns: {list(storm_features.columns)}")
        
        return storm_features
        
    except Exception as e:
        logging.error(f"Error in extract_storm_features: {e}")
        import traceback
        traceback.print_exc()
        return None

def perform_dimensionality_reduction(storm_features, method='umap', n_components=2):
    """Perform UMAP or t-SNE dimensionality reduction - FIXED VERSION"""
    try:
        if storm_features is None or storm_features.empty:
            raise ValueError("No storm features provided")
        
        # Select numeric features for clustering - FIXED
        feature_cols = []
        for col in storm_features.columns:
            if col not in ['SID', 'basin'] and storm_features[col].dtype in ['float64', 'int64']:
                # Check if column has valid data
                valid_data = storm_features[col].dropna()
                if len(valid_data) > 0 and valid_data.std() > 0:  # Only include columns with variance
                    feature_cols.append(col)
        
        if len(feature_cols) == 0:
            raise ValueError("No valid numeric features found for clustering")
        
        logging.info(f"Using {len(feature_cols)} features for clustering: {feature_cols}")
        
        X = storm_features[feature_cols].fillna(0)
        
        # Check if we have enough samples
        if len(X) < 2:
            raise ValueError("Need at least 2 storms for clustering")
        
        # Standardize features
        scaler = StandardScaler()
        X_scaled = scaler.fit_transform(X)
        
        # Perform dimensionality reduction
        if method.lower() == 'umap' and UMAP_AVAILABLE and len(X_scaled) >= 4:
            # UMAP parameters optimized for typhoon data - fixed warnings
            n_neighbors = min(15, len(X_scaled) - 1)
            reducer = umap.UMAP(
                n_components=n_components,
                n_neighbors=n_neighbors,
                min_dist=0.1,
                metric='euclidean',
                random_state=42,
                n_jobs=1  # Explicitly set to avoid warning
            )
        elif method.lower() == 'tsne' and len(X_scaled) >= 4:
            # t-SNE parameters
            perplexity = min(30, len(X_scaled) // 4)
            perplexity = max(1, perplexity)  # Ensure perplexity is at least 1
            reducer = TSNE(
                n_components=n_components,
                perplexity=perplexity,
                learning_rate=200,
                n_iter=1000,
                random_state=42
            )
        else:
            # Fallback to PCA
            reducer = PCA(n_components=n_components, random_state=42)
        
        # Fit and transform
        embedding = reducer.fit_transform(X_scaled)
        
        logging.info(f"Dimensionality reduction successful: {X_scaled.shape} -> {embedding.shape}")
        
        return embedding, feature_cols, scaler
        
    except Exception as e:
        logging.error(f"Error in perform_dimensionality_reduction: {e}")
        raise

def cluster_storms_data(embedding, method='dbscan', eps=0.5, min_samples=3):
    """Cluster storms based on their embedding - FIXED NAME VERSION"""
    try:
        if len(embedding) < 2:
            return np.array([0] * len(embedding))  # Single cluster for insufficient data
        
        if method.lower() == 'dbscan':
            # Adjust min_samples based on data size
            min_samples = min(min_samples, max(2, len(embedding) // 5))
            clusterer = DBSCAN(eps=eps, min_samples=min_samples)
        elif method.lower() == 'kmeans':
            # Adjust n_clusters based on data size
            n_clusters = min(5, max(2, len(embedding) // 3))
            clusterer = KMeans(n_clusters=n_clusters, random_state=42)
        else:
            raise ValueError("Method must be 'dbscan' or 'kmeans'")
        
        clusters = clusterer.fit_predict(embedding)
        
        logging.info(f"Clustering complete: {len(np.unique(clusters))} clusters found")
        
        return clusters
        
    except Exception as e:
        logging.error(f"Error in cluster_storms_data: {e}")
        # Return single cluster as fallback
        return np.array([0] * len(embedding))

def create_separate_clustering_plots(storm_features, typhoon_data, method='umap'):
    """Create separate plots for clustering analysis - ENHANCED CLARITY VERSION"""
    try:
        # Validate inputs
        if storm_features is None or storm_features.empty:
            raise ValueError("No storm features available for clustering")
            
        if typhoon_data is None or typhoon_data.empty:
            raise ValueError("No typhoon data available for route visualization")
        
        logging.info(f"Starting clustering visualization with {len(storm_features)} storms")
        
        # Perform dimensionality reduction
        embedding, feature_cols, scaler = perform_dimensionality_reduction(storm_features, method)
        
        # Perform clustering
        cluster_labels = cluster_storms_data(embedding, 'dbscan')
        
        # Add clustering results to storm features
        storm_features_viz = storm_features.copy()
        storm_features_viz['cluster'] = cluster_labels
        storm_features_viz['dim1'] = embedding[:, 0]
        storm_features_viz['dim2'] = embedding[:, 1]
        
        # Merge with typhoon data for additional info - SAFE MERGE
        try:
            storm_info = typhoon_data.groupby('SID').first()[['NAME', 'SEASON']].reset_index()
            storm_features_viz = storm_features_viz.merge(storm_info, on='SID', how='left')
            # Fill missing values
            storm_features_viz['NAME'] = storm_features_viz['NAME'].fillna('UNNAMED')
            storm_features_viz['SEASON'] = storm_features_viz['SEASON'].fillna(2000)
        except Exception as merge_error:
            logging.warning(f"Could not merge storm info: {merge_error}")
            storm_features_viz['NAME'] = 'UNNAMED'
            storm_features_viz['SEASON'] = 2000
        
        # Get unique clusters and assign distinct colors
        unique_clusters = sorted([c for c in storm_features_viz['cluster'].unique() if c != -1])
        noise_count = len(storm_features_viz[storm_features_viz['cluster'] == -1])
        
        # 1. Enhanced clustering scatter plot with clear cluster identification
        fig_cluster = go.Figure()
        
        # Add noise points first
        if noise_count > 0:
            noise_data = storm_features_viz[storm_features_viz['cluster'] == -1]
            fig_cluster.add_trace(
                go.Scatter(
                    x=noise_data['dim1'],
                    y=noise_data['dim2'],
                    mode='markers',
                    marker=dict(color='lightgray', size=8, opacity=0.5, symbol='x'),
                    name=f'Noise ({noise_count} storms)',
                    hovertemplate=(
                        '<b>%{customdata[0]}</b><br>'
                        'Season: %{customdata[1]}<br>'
                        'Cluster: Noise<br>'
                        f'{method.upper()} Dim 1: %{{x:.2f}}<br>'
                        f'{method.upper()} Dim 2: %{{y:.2f}}<br>'
                        '<extra></extra>'
                    ),
                    customdata=np.column_stack((
                        noise_data['NAME'].fillna('UNNAMED'),
                        noise_data['SEASON'].fillna(2000)
                    ))
                )
            )
        
        # Add clusters with distinct colors and shapes
        cluster_symbols = ['circle', 'square', 'diamond', 'triangle-up', 'triangle-down', 
                          'pentagon', 'hexagon', 'star', 'cross', 'circle-open']
        
        for i, cluster in enumerate(unique_clusters):
            cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
            color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
            symbol = cluster_symbols[i % len(cluster_symbols)]
            
            fig_cluster.add_trace(
                go.Scatter(
                    x=cluster_data['dim1'],
                    y=cluster_data['dim2'],
                    mode='markers',
                    marker=dict(color=color, size=10, symbol=symbol, line=dict(width=1, color='white')),
                    name=f'Cluster {cluster} ({len(cluster_data)} storms)',
                    hovertemplate=(
                        '<b>%{customdata[0]}</b><br>'
                        'Season: %{customdata[1]}<br>'
                        f'Cluster: {cluster}<br>'
                        f'{method.upper()} Dim 1: %{{x:.2f}}<br>'
                        f'{method.upper()} Dim 2: %{{y:.2f}}<br>'
                        'Intensity: %{customdata[2]:.0f} kt<br>'
                        '<extra></extra>'
                    ),
                    customdata=np.column_stack((
                        cluster_data['NAME'].fillna('UNNAMED'),
                        cluster_data['SEASON'].fillna(2000),
                        cluster_data['USA_WIND_max'].fillna(0)
                    ))
                )
            )
        
        fig_cluster.update_layout(
            title=f'Storm Clustering Analysis using {method.upper()}<br><sub>Each symbol/color represents a distinct storm pattern group</sub>',
            xaxis_title=f'{method.upper()} Dimension 1',
            yaxis_title=f'{method.upper()} Dimension 2',
            height=600,
            showlegend=True
        )
        
        # 2. ENHANCED route map with cluster legends and clearer representation
        fig_routes = go.Figure()
        
        # Create a comprehensive legend showing cluster characteristics
        cluster_info_text = []
        
        for i, cluster in enumerate(unique_clusters):
            cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist()
            color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
            
            # Get cluster statistics for legend
            cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
            avg_intensity = cluster_data['USA_WIND_max'].mean() if 'USA_WIND_max' in cluster_data.columns else 0
            avg_pressure = cluster_data['USA_PRES_min'].mean() if 'USA_PRES_min' in cluster_data.columns else 1000
            
            cluster_info_text.append(
                f"Cluster {cluster}: {len(cluster_storm_ids)} storms, "
                f"Avg: {avg_intensity:.0f}kt/{avg_pressure:.0f}hPa"
            )
            
            # Add multiple storms per cluster with clear identification
            storms_added = 0
            for j, sid in enumerate(cluster_storm_ids[:8]):  # Show up to 8 storms per cluster
                try:
                    storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
                    if len(storm_track) > 1:
                        # Ensure valid coordinates
                        valid_coords = storm_track['LAT'].notna() & storm_track['LON'].notna()
                        storm_track = storm_track[valid_coords]
                        
                        if len(storm_track) > 1:
                            storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED'
                            storm_season = storm_track['SEASON'].iloc[0] if 'SEASON' in storm_track.columns else 'Unknown'
                            
                            # Vary line style for different storms in same cluster
                            line_styles = ['solid', 'dash', 'dot', 'dashdot']
                            line_style = line_styles[j % len(line_styles)]
                            line_width = 3 if j == 0 else 2  # First storm thicker
                            
                            fig_routes.add_trace(
                                go.Scattergeo(
                                    lon=storm_track['LON'],
                                    lat=storm_track['LAT'],
                                    mode='lines+markers',
                                    line=dict(color=color, width=line_width, dash=line_style),
                                    marker=dict(color=color, size=3),
                                    name=f'C{cluster}: {storm_name} ({storm_season})',
                                    showlegend=True,
                                    legendgroup=f'cluster_{cluster}',
                                    hovertemplate=(
                                        f'<b>Cluster {cluster}: {storm_name}</b><br>'
                                        'Lat: %{lat:.1f}Β°<br>'
                                        'Lon: %{lon:.1f}Β°<br>'
                                        f'Season: {storm_season}<br>'
                                        f'Pattern Group: {cluster}<br>'
                                        '<extra></extra>'
                                    )
                                )
                            )
                            storms_added += 1
                except Exception as track_error:
                    logging.warning(f"Error adding track for storm {sid}: {track_error}")
                    continue
            
            # Add cluster centroid marker
            if len(cluster_storm_ids) > 0:
                # Calculate average genesis location for cluster
                cluster_storm_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
                if 'genesis_lat' in cluster_storm_data.columns and 'genesis_lon' in cluster_storm_data.columns:
                    avg_lat = cluster_storm_data['genesis_lat'].mean()
                    avg_lon = cluster_storm_data['genesis_lon'].mean()
                    
                    fig_routes.add_trace(
                        go.Scattergeo(
                            lon=[avg_lon],
                            lat=[avg_lat],
                            mode='markers',
                            marker=dict(
                                color=color, 
                                size=20, 
                                symbol='star',
                                line=dict(width=2, color='white')
                            ),
                            name=f'C{cluster} Center',
                            showlegend=True,
                            legendgroup=f'cluster_{cluster}',
                            hovertemplate=(
                                f'<b>Cluster {cluster} Genesis Center</b><br>'
                                f'Avg Position: {avg_lat:.1f}Β°N, {avg_lon:.1f}Β°E<br>'
                                f'Storms: {len(cluster_storm_ids)}<br>'
                                f'Avg Intensity: {avg_intensity:.0f} kt<br>'
                                '<extra></extra>'
                            )
                        )
                    )
        
        # Update route map layout with enhanced information and LARGER SIZE
        fig_routes.update_layout(
            title=f"Storm Routes by {method.upper()} Clusters<br><sub>Different line styles = different storms in same cluster | Stars = cluster centers</sub>",
            geo=dict(
                projection_type="natural earth",
                showland=True,
                landcolor="LightGray",
                showocean=True,
                oceancolor="LightBlue",
                showcoastlines=True,
                coastlinecolor="Gray",
                center=dict(lat=20, lon=140),
                projection_scale=2.5  # Larger map
            ),
            height=800,  # Much larger height
            width=1200,  # Wider map
            showlegend=True
        )
        
        # Add cluster info annotation
        cluster_summary = "<br>".join(cluster_info_text)
        fig_routes.add_annotation(
            text=f"<b>Cluster Summary:</b><br>{cluster_summary}",
            xref="paper", yref="paper",
            x=0.02, y=0.98,
            showarrow=False,
            align="left",
            bgcolor="rgba(255,255,255,0.8)",
            bordercolor="gray",
            borderwidth=1
        )
        
        # 3. Enhanced pressure evolution plot with cluster identification
        fig_pressure = go.Figure()
        
        for i, cluster in enumerate(unique_clusters):
            cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist()
            color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
            
            cluster_pressures = []
            for j, sid in enumerate(cluster_storm_ids[:5]):  # Limit to 5 storms per cluster
                try:
                    storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
                    if len(storm_track) > 1 and 'USA_PRES' in storm_track.columns:
                        pressure_values = pd.to_numeric(storm_track['USA_PRES'], errors='coerce').dropna()
                        if len(pressure_values) > 0:
                            storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED'
                            time_hours = range(len(pressure_values))
                            
                            # Normalize time to show relative progression
                            normalized_time = np.linspace(0, 100, len(pressure_values))
                            
                            fig_pressure.add_trace(
                                go.Scatter(
                                    x=normalized_time,
                                    y=pressure_values,
                                    mode='lines',
                                    line=dict(color=color, width=2, dash='solid' if j == 0 else 'dash'),
                                    name=f'C{cluster}: {storm_name}' if j == 0 else None,
                                    showlegend=(j == 0),
                                    legendgroup=f'pressure_cluster_{cluster}',
                                    hovertemplate=(
                                        f'<b>Cluster {cluster}: {storm_name}</b><br>'
                                        'Progress: %{x:.0f}%<br>'
                                        'Pressure: %{y:.0f} hPa<br>'
                                        '<extra></extra>'
                                    ),
                                    opacity=0.8 if j == 0 else 0.5
                                )
                            )
                            cluster_pressures.extend(pressure_values)
                except Exception as e:
                    continue
            
            # Add cluster average line
            if cluster_pressures:
                avg_pressure = np.mean(cluster_pressures)
                fig_pressure.add_hline(
                    y=avg_pressure,
                    line_dash="dot",
                    line_color=color,
                    annotation_text=f"C{cluster} Avg: {avg_pressure:.0f}",
                    annotation_position="right"
                )
        
        fig_pressure.update_layout(
            title=f"Pressure Evolution by {method.upper()} Clusters<br><sub>Normalized timeline (0-100%) | Dotted lines = cluster averages</sub>",
            xaxis_title="Storm Progress (%)",
            yaxis_title="Pressure (hPa)",
            height=500
        )
        
        # 4. Enhanced wind evolution plot
        fig_wind = go.Figure()
        
        for i, cluster in enumerate(unique_clusters):
            cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist()
            color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
            
            cluster_winds = []
            for j, sid in enumerate(cluster_storm_ids[:5]):  # Limit to 5 storms per cluster
                try:
                    storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
                    if len(storm_track) > 1 and 'USA_WIND' in storm_track.columns:
                        wind_values = pd.to_numeric(storm_track['USA_WIND'], errors='coerce').dropna()
                        if len(wind_values) > 0:
                            storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED'
                            
                            # Normalize time to show relative progression
                            normalized_time = np.linspace(0, 100, len(wind_values))
                            
                            fig_wind.add_trace(
                                go.Scatter(
                                    x=normalized_time,
                                    y=wind_values,
                                    mode='lines',
                                    line=dict(color=color, width=2, dash='solid' if j == 0 else 'dash'),
                                    name=f'C{cluster}: {storm_name}' if j == 0 else None,
                                    showlegend=(j == 0),
                                    legendgroup=f'wind_cluster_{cluster}',
                                    hovertemplate=(
                                        f'<b>Cluster {cluster}: {storm_name}</b><br>'
                                        'Progress: %{x:.0f}%<br>'
                                        'Wind: %{y:.0f} kt<br>'
                                        '<extra></extra>'
                                    ),
                                    opacity=0.8 if j == 0 else 0.5
                                )
                            )
                            cluster_winds.extend(wind_values)
                except Exception as e:
                    continue
            
            # Add cluster average line
            if cluster_winds:
                avg_wind = np.mean(cluster_winds)
                fig_wind.add_hline(
                    y=avg_wind,
                    line_dash="dot",
                    line_color=color,
                    annotation_text=f"C{cluster} Avg: {avg_wind:.0f}",
                    annotation_position="right"
                )
        
        fig_wind.update_layout(
            title=f"Wind Speed Evolution by {method.upper()} Clusters<br><sub>Normalized timeline (0-100%) | Dotted lines = cluster averages</sub>",
            xaxis_title="Storm Progress (%)",
            yaxis_title="Wind Speed (kt)",
            height=500
        )
        
        # Generate enhanced cluster statistics with clear explanations
        try:
            stats_text = f"ENHANCED {method.upper()} CLUSTER ANALYSIS RESULTS\n" + "="*60 + "\n\n"
            stats_text += f"πŸ” DIMENSIONALITY REDUCTION: {method.upper()}\n"
            stats_text += f"🎯 CLUSTERING ALGORITHM: DBSCAN (automatic pattern discovery)\n"
            stats_text += f"πŸ“Š TOTAL STORMS ANALYZED: {len(storm_features_viz)}\n"
            stats_text += f"🎨 CLUSTERS DISCOVERED: {len(unique_clusters)}\n"
            if noise_count > 0:
                stats_text += f"❌ NOISE POINTS: {noise_count} storms (don't fit clear patterns)\n"
            stats_text += "\n"
            
            for cluster in sorted(storm_features_viz['cluster'].unique()):
                cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
                storm_count = len(cluster_data)
                
                if cluster == -1:
                    stats_text += f"❌ NOISE GROUP: {storm_count} storms\n"
                    stats_text += "   β†’ These storms don't follow the main patterns\n"
                    stats_text += "   β†’ May represent unique or rare storm behaviors\n\n"
                    continue
                
                stats_text += f"🎯 CLUSTER {cluster}: {storm_count} storms\n"
                stats_text += f"   🎨 Color: {CLUSTER_COLORS[cluster % len(CLUSTER_COLORS)]}\n"
                
                # Add detailed statistics if available
                if 'USA_WIND_max' in cluster_data.columns:
                    wind_mean = cluster_data['USA_WIND_max'].mean()
                    wind_std = cluster_data['USA_WIND_max'].std()
                    stats_text += f"   πŸ’¨ Intensity: {wind_mean:.1f} Β± {wind_std:.1f} kt\n"
                
                if 'USA_PRES_min' in cluster_data.columns:
                    pres_mean = cluster_data['USA_PRES_min'].mean()
                    pres_std = cluster_data['USA_PRES_min'].std()
                    stats_text += f"   🌑️ Pressure: {pres_mean:.1f} ± {pres_std:.1f} hPa\n"
                
                if 'track_length' in cluster_data.columns:
                    track_mean = cluster_data['track_length'].mean()
                    stats_text += f"   πŸ“ Avg Track Length: {track_mean:.1f} points\n"
                
                if 'genesis_lat' in cluster_data.columns and 'genesis_lon' in cluster_data.columns:
                    lat_mean = cluster_data['genesis_lat'].mean()
                    lon_mean = cluster_data['genesis_lon'].mean()
                    stats_text += f"   🎯 Genesis Region: {lat_mean:.1f}°N, {lon_mean:.1f}°E\n"
                
                # Add interpretation
                if wind_mean < 50:
                    stats_text += "   πŸ’‘ Pattern: Weaker storm group\n"
                elif wind_mean > 100:
                    stats_text += "   πŸ’‘ Pattern: Intense storm group\n"
                else:
                    stats_text += "   πŸ’‘ Pattern: Moderate intensity group\n"
                
                stats_text += "\n"
            
            # Add explanation of the analysis
            stats_text += "πŸ“– INTERPRETATION GUIDE:\n"
            stats_text += f"β€’ {method.upper()} reduces storm characteristics to 2D for visualization\n"
            stats_text += "β€’ DBSCAN finds natural groupings without preset number of clusters\n"
            stats_text += "β€’ Each cluster represents storms with similar behavior patterns\n"
            stats_text += "β€’ Route colors match cluster colors from the similarity plot\n"
            stats_text += "β€’ Stars on map show average genesis locations for each cluster\n"
            stats_text += "β€’ Temporal plots show how each cluster behaves over time\n\n"
            
            stats_text += f"πŸ”§ FEATURES USED FOR CLUSTERING:\n"
            stats_text += f"   Total: {len(feature_cols)} storm characteristics\n"
            stats_text += f"   Including: intensity, pressure, track shape, genesis location\n"
            
        except Exception as stats_error:
            stats_text = f"Error generating enhanced statistics: {str(stats_error)}"
        
        return fig_cluster, fig_routes, fig_pressure, fig_wind, stats_text
        
    except Exception as e:
        logging.error(f"Error in enhanced clustering analysis: {e}")
        import traceback
        traceback.print_exc()
        
        error_fig = go.Figure()
        error_fig.add_annotation(
            text=f"Error in clustering analysis: {str(e)}",
            xref="paper", yref="paper",
            x=0.5, y=0.5, xanchor='center', yanchor='middle',
            showarrow=False, font_size=16
        )
        return error_fig, error_fig, error_fig, error_fig, f"Error in clustering: {str(e)}"

# -----------------------------
# ENHANCED: Advanced Prediction System with Route Forecasting
# -----------------------------

def create_advanced_prediction_model(typhoon_data):
    """Create advanced ML model for intensity and route prediction"""
    try:
        if typhoon_data is None or typhoon_data.empty:
            return None, "No data available for model training"
        
        # Prepare training data
        features = []
        targets = []
        
        for sid in typhoon_data['SID'].unique():
            storm_data = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
            
            if len(storm_data) < 3:  # Need at least 3 points for prediction
                continue
            
            for i in range(len(storm_data) - 1):
                current = storm_data.iloc[i]
                next_point = storm_data.iloc[i + 1]
                
                # Extract features (current state)
                feature_row = []
                
                # Current position
                feature_row.extend([
                    current.get('LAT', 20),
                    current.get('LON', 140)
                ])
                
                # Current intensity
                feature_row.extend([
                    current.get('USA_WIND', 30),
                    current.get('USA_PRES', 1000)
                ])
                
                # Time features
                if 'ISO_TIME' in current and pd.notna(current['ISO_TIME']):
                    month = current['ISO_TIME'].month
                    day_of_year = current['ISO_TIME'].dayofyear
                else:
                    month = 9  # Peak season default
                    day_of_year = 250
                
                feature_row.extend([month, day_of_year])
                
                # Motion features (if previous point exists)
                if i > 0:
                    prev = storm_data.iloc[i - 1]
                    dlat = current.get('LAT', 20) - prev.get('LAT', 20)
                    dlon = current.get('LON', 140) - prev.get('LON', 140)
                    speed = np.sqrt(dlat**2 + dlon**2)
                    bearing = np.arctan2(dlat, dlon)
                else:
                    speed = 0
                    bearing = 0
                
                feature_row.extend([speed, bearing])
                
                features.append(feature_row)
                
                # Target: next position and intensity
                targets.append([
                    next_point.get('LAT', 20),
                    next_point.get('LON', 140),
                    next_point.get('USA_WIND', 30)
                ])
        
        if len(features) < 10:  # Need sufficient training data
            return None, "Insufficient data for model training"
        
        # Train model
        X = np.array(features)
        y = np.array(targets)
        
        # Split data
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
        
        # Create separate models for position and intensity
        models = {}
        
        # Position model (lat, lon)
        pos_model = RandomForestRegressor(n_estimators=100, random_state=42)
        pos_model.fit(X_train, y_train[:, :2])
        models['position'] = pos_model
        
        # Intensity model (wind speed)
        int_model = RandomForestRegressor(n_estimators=100, random_state=42)
        int_model.fit(X_train, y_train[:, 2])
        models['intensity'] = int_model
        
        # Calculate model performance
        pos_pred = pos_model.predict(X_test)
        int_pred = int_model.predict(X_test)
        
        pos_mae = mean_absolute_error(y_test[:, :2], pos_pred)
        int_mae = mean_absolute_error(y_test[:, 2], int_pred)
        
        model_info = f"Position MAE: {pos_mae:.2f}Β°, Intensity MAE: {int_mae:.2f} kt"
        
        return models, model_info
        
    except Exception as e:
        return None, f"Error creating prediction model: {str(e)}"

def rgb_string_to_hex(rgb_string):
    """Convert RGB string like 'rgb(255,0,0)' to hex format '#FF0000'"""
    try:
        if rgb_string.startswith('rgb(') and rgb_string.endswith(')'):
            # Extract numbers from rgb(r,g,b)
            rgb_values = rgb_string[4:-1].split(',')
            r, g, b = [int(x.strip()) for x in rgb_values]
            return f'#{r:02x}{g:02x}{b:02x}'
        else:
            # Already in hex or other format
            return rgb_string
    except:
        return '#808080'  # Default gray

def get_realistic_genesis_locations():
    """Get realistic typhoon genesis regions based on climatology"""
    return {
        "Western Pacific Main Development Region": {"lat": 12.5, "lon": 145.0, "description": "Peak activity zone (Guam area)"},
        "South China Sea": {"lat": 15.0, "lon": 115.0, "description": "Secondary development region"},
        "Philippine Sea": {"lat": 18.0, "lon": 135.0, "description": "Recurving storm region"},
        "Marshall Islands": {"lat": 8.0, "lon": 165.0, "description": "Eastern development zone"},
        "Monsoon Trough": {"lat": 10.0, "lon": 130.0, "description": "Monsoon-driven genesis"},
        "ITCZ Region": {"lat": 6.0, "lon": 140.0, "description": "Near-equatorial development"},
        "Subtropical Region": {"lat": 22.0, "lon": 125.0, "description": "Late season development"},
        "Bay of Bengal": {"lat": 15.0, "lon": 88.0, "description": "Indian Ocean cyclones"},
        "Eastern Pacific": {"lat": 12.0, "lon": -105.0, "description": "Hurricane development zone"},
        "Atlantic MDR": {"lat": 12.0, "lon": -45.0, "description": "Main Development Region"}
    }

def predict_storm_route_and_intensity_realistic(genesis_region, month, oni_value, models=None, forecast_hours=72, use_advanced_physics=True):
    """Realistic prediction with proper typhoon speeds and development"""
    try:
        genesis_locations = get_realistic_genesis_locations()
        
        if genesis_region not in genesis_locations:
            genesis_region = "Western Pacific Main Development Region"  # Default
        
        genesis_info = genesis_locations[genesis_region]
        lat = genesis_info["lat"]
        lon = genesis_info["lon"]
        
        results = {
            'current_prediction': {},
            'route_forecast': [],
            'confidence_scores': {},
            'model_info': 'Realistic Genesis Model',
            'genesis_info': genesis_info
        }
        
        # REALISTIC starting intensity - Tropical Depression level
        base_intensity = 30  # Start at TD level (25-35 kt)
        
        # Environmental factors for genesis
        if oni_value > 1.0:  # Strong El NiΓ±o - suppressed development
            intensity_modifier = -6
        elif oni_value > 0.5:  # Moderate El NiΓ±o
            intensity_modifier = -3
        elif oni_value < -1.0:  # Strong La NiΓ±a - enhanced development
            intensity_modifier = +8
        elif oni_value < -0.5:  # Moderate La NiΓ±a
            intensity_modifier = +5
        else:  # Neutral
            intensity_modifier = oni_value * 2
        
        # Seasonal genesis effects
        seasonal_factors = {
            1: -8, 2: -6, 3: -4, 4: -2, 5: 2, 6: 6,
            7: 10, 8: 12, 9: 15, 10: 10, 11: 4, 12: -5
        }
        seasonal_modifier = seasonal_factors.get(month, 0)
        
        # Genesis region favorability
        region_factors = {
            "Western Pacific Main Development Region": 8,
            "South China Sea": 4,
            "Philippine Sea": 5,
            "Marshall Islands": 7,
            "Monsoon Trough": 6,
            "ITCZ Region": 3,
            "Subtropical Region": 2,
            "Bay of Bengal": 4,
            "Eastern Pacific": 6,
            "Atlantic MDR": 5
        }
        region_modifier = region_factors.get(genesis_region, 0)
        
        # Calculate realistic starting intensity (TD level)
        predicted_intensity = base_intensity + intensity_modifier + seasonal_modifier + region_modifier
        predicted_intensity = max(25, min(40, predicted_intensity))  # Keep in TD-weak TS range
        
        # Add realistic uncertainty for genesis
        intensity_uncertainty = np.random.normal(0, 2)
        predicted_intensity += intensity_uncertainty
        predicted_intensity = max(25, min(38, predicted_intensity))  # TD range
        
        results['current_prediction'] = {
            'intensity_kt': predicted_intensity,
            'pressure_hpa': 1008 - (predicted_intensity - 25) * 0.6,  # Realistic TD pressure
            'category': categorize_typhoon_enhanced(predicted_intensity),
            'genesis_region': genesis_region
        }
        
        # REALISTIC route prediction with proper typhoon speeds
        current_lat = lat
        current_lon = lon
        current_intensity = predicted_intensity
        
        route_points = []
        
        # Track storm development over time with REALISTIC SPEEDS
        for hour in range(0, forecast_hours + 6, 6):
            
            # REALISTIC typhoon motion - much faster speeds
            # Typical typhoon forward speed: 15-25 km/h (0.14-0.23Β°/hour)
            
            # Base forward speed depends on latitude and storm intensity
            if current_lat < 20:  # Low latitude - slower
                base_speed = 0.12  # ~13 km/h
            elif current_lat < 30:  # Mid latitude - moderate
                base_speed = 0.18  # ~20 km/h
            else:  # High latitude - faster
                base_speed = 0.25  # ~28 km/h
            
            # Intensity affects speed (stronger storms can move faster)
            intensity_speed_factor = 1.0 + (current_intensity - 50) / 200
            base_speed *= max(0.8, min(1.4, intensity_speed_factor))
            
            # Beta drift (Coriolis effect) - realistic values
            beta_drift_lat = 0.02 * np.sin(np.radians(current_lat))
            beta_drift_lon = -0.05 * np.cos(np.radians(current_lat))
            
            # Seasonal steering patterns with realistic speeds
            if month in [6, 7, 8, 9]:  # Peak season
                ridge_strength = 1.2
                ridge_position = 32 + 4 * np.sin(2 * np.pi * (month - 6) / 4)
            else:  # Off season
                ridge_strength = 0.9
                ridge_position = 28
            
            # REALISTIC motion based on position relative to subtropical ridge
            if current_lat < ridge_position - 10:  # Well south of ridge - westward movement
                lat_tendency = base_speed * 0.3 + beta_drift_lat  # Slight poleward
                lon_tendency = -base_speed * 0.9 + beta_drift_lon  # Strong westward
            elif current_lat > ridge_position - 3:  # Near ridge - recurvature
                lat_tendency = base_speed * 0.8 + beta_drift_lat  # Strong poleward
                lon_tendency = base_speed * 0.4 + beta_drift_lon  # Eastward
            else:  # In between - normal WNW motion
                lat_tendency = base_speed * 0.4 + beta_drift_lat  # Moderate poleward
                lon_tendency = -base_speed * 0.7 + beta_drift_lon  # Moderate westward
            
            # ENSO steering modulation (realistic effects)
            if oni_value > 0.5:  # El NiΓ±o - more eastward/poleward motion
                lon_tendency += 0.05
                lat_tendency += 0.02
            elif oni_value < -0.5:  # La NiΓ±a - more westward motion
                lon_tendency -= 0.08
                lat_tendency -= 0.01
            
            # Add motion uncertainty that grows with time (realistic error growth)
            motion_uncertainty = 0.02 + (hour / 120) * 0.04
            lat_noise = np.random.normal(0, motion_uncertainty)
            lon_noise = np.random.normal(0, motion_uncertainty)
            
            # Update position with realistic speeds
            current_lat += lat_tendency + lat_noise
            current_lon += lon_tendency + lon_noise
            
            # REALISTIC intensity evolution with proper development cycles
            
            # Development phase (first 48-72 hours) - realistic intensification
            if hour <= 48:
                if current_intensity < 50:  # Still weak - rapid development possible
                    if 10 <= current_lat <= 25 and 115 <= current_lon <= 165:  # Favorable environment
                        intensity_tendency = 4.5 if current_intensity < 35 else 3.0
                    elif 120 <= current_lon <= 155 and 15 <= current_lat <= 20:  # Best environment
                        intensity_tendency = 6.0 if current_intensity < 40 else 4.0
                    else:
                        intensity_tendency = 2.0
                elif current_intensity < 80:  # Moderate intensity
                    intensity_tendency = 2.5 if (120 <= current_lon <= 155 and 10 <= current_lat <= 25) else 1.0
                else:  # Already strong
                    intensity_tendency = 1.0
                    
            # Mature phase (48-120 hours) - peak intensity maintenance
            elif hour <= 120:
                if current_lat < 25 and current_lon > 120:  # Still in favorable waters
                    if current_intensity < 120:
                        intensity_tendency = 1.5
                    else:
                        intensity_tendency = 0.0  # Maintain intensity
                else:
                    intensity_tendency = -1.5
                    
            # Extended phase (120+ hours) - gradual weakening
            else:
                if current_lat < 30 and current_lon > 115:
                    intensity_tendency = -2.0  # Slow weakening
                else:
                    intensity_tendency = -3.5  # Faster weakening
            
            # Environmental modulation (realistic effects)
            if current_lat > 35:  # High latitude - rapid weakening
                intensity_tendency -= 12
            elif current_lat > 30:  # Moderate latitude
                intensity_tendency -= 5
            elif current_lon < 110:  # Land interaction
                intensity_tendency -= 15
            elif 125 <= current_lon <= 155 and 10 <= current_lat <= 25:  # Warm pool
                intensity_tendency += 2
            elif 160 <= current_lon <= 180 and 15 <= current_lat <= 30:  # Still warm
                intensity_tendency += 1
            
            # SST effects (realistic temperature impact)
            if current_lat < 8:  # Very warm but weak Coriolis
                intensity_tendency += 0.5
            elif 8 <= current_lat <= 20:  # Sweet spot for development
                intensity_tendency += 2.0
            elif 20 < current_lat <= 30:  # Marginal
                intensity_tendency -= 1.0
            elif current_lat > 30:  # Cool waters
                intensity_tendency -= 4.0
            
            # Shear effects (simplified but realistic)
            if month in [12, 1, 2, 3]:  # High shear season
                intensity_tendency -= 2.0
            elif month in [7, 8, 9]:  # Low shear season
                intensity_tendency += 1.0
            
            # Update intensity with realistic bounds and variability
            intensity_noise = np.random.normal(0, 1.5)  # Small random fluctuations
            current_intensity += intensity_tendency + intensity_noise
            current_intensity = max(20, min(185, current_intensity))  # Realistic range
            
            # Calculate confidence based on forecast time and environment
            base_confidence = 0.92
            time_penalty = (hour / 120) * 0.45
            environment_penalty = 0.15 if current_lat > 30 or current_lon < 115 else 0
            confidence = max(0.25, base_confidence - time_penalty - environment_penalty)
            
            # Determine development stage
            if hour <= 24:
                stage = 'Genesis'
            elif hour <= 72:
                stage = 'Development'
            elif hour <= 120:
                stage = 'Mature'
            elif hour <= 240:
                stage = 'Extended'
            else:
                stage = 'Long-term'
            
            route_points.append({
                'hour': hour,
                'lat': current_lat,
                'lon': current_lon,
                'intensity_kt': current_intensity,
                'category': categorize_typhoon_enhanced(current_intensity),
                'confidence': confidence,
                'development_stage': stage,
                'forward_speed_kmh': base_speed * 111,  # Convert to km/h
                'pressure_hpa': max(900, 1013 - (current_intensity - 25) * 0.9)
            })
        
        results['route_forecast'] = route_points
        
        # Realistic confidence scores
        results['confidence_scores'] = {
            'genesis': 0.88,
            'early_development': 0.82,
            'position_24h': 0.85,
            'position_48h': 0.78,
            'position_72h': 0.68,
            'intensity_24h': 0.75,
            'intensity_48h': 0.65,
            'intensity_72h': 0.55,
            'long_term': max(0.3, 0.8 - (forecast_hours / 240) * 0.5)
        }
        
        # Model information
        results['model_info'] = f"Enhanced Realistic Model - {genesis_region}"
        
        return results
        
    except Exception as e:
        logging.error(f"Realistic prediction error: {str(e)}")
        return {
            'error': f"Prediction error: {str(e)}",
            'current_prediction': {'intensity_kt': 30, 'category': 'Tropical Depression'},
            'route_forecast': [],
            'confidence_scores': {},
            'model_info': 'Error in prediction'
        }

def create_animated_route_visualization(prediction_results, show_uncertainty=True, enable_animation=True):
    """Create comprehensive animated route visualization with intensity plots"""
    try:
        if 'route_forecast' not in prediction_results or not prediction_results['route_forecast']:
            return None, "No route forecast data available"
        
        route_data = prediction_results['route_forecast']
        
        # Extract data for plotting
        hours = [point['hour'] for point in route_data]
        lats = [point['lat'] for point in route_data]
        lons = [point['lon'] for point in route_data]
        intensities = [point['intensity_kt'] for point in route_data]
        categories = [point['category'] for point in route_data]
        confidences = [point.get('confidence', 0.8) for point in route_data]
        stages = [point.get('development_stage', 'Unknown') for point in route_data]
        speeds = [point.get('forward_speed_kmh', 15) for point in route_data]
        pressures = [point.get('pressure_hpa', 1013) for point in route_data]
        
        # Create subplot layout with map and intensity plot
        fig = make_subplots(
            rows=2, cols=2,
            subplot_titles=('Storm Track Animation', 'Wind Speed vs Time', 'Forward Speed vs Time', 'Pressure vs Time'),
            specs=[[{"type": "geo", "colspan": 2}, None],
                   [{"type": "xy"}, {"type": "xy"}]],
            vertical_spacing=0.15,
            row_heights=[0.7, 0.3]
        )
        
        if enable_animation:
            # Add frames for animation
            frames = []
            
            # Static background elements first
            # Add complete track as background
            fig.add_trace(
                go.Scattergeo(
                    lon=lons,
                    lat=lats,
                    mode='lines',
                    line=dict(color='lightgray', width=2, dash='dot'),
                    name='Complete Track',
                    showlegend=True,
                    opacity=0.4
                ),
                row=1, col=1
            )
            
            # Genesis marker (always visible)
            fig.add_trace(
                go.Scattergeo(
                    lon=[lons[0]],
                    lat=[lats[0]],
                    mode='markers',
                    marker=dict(
                        size=25,
                        color='gold',
                        symbol='star',
                        line=dict(width=3, color='black')
                    ),
                    name='Genesis',
                    showlegend=True,
                    hovertemplate=(
                        f"<b>GENESIS</b><br>"
                        f"Position: {lats[0]:.1f}Β°N, {lons[0]:.1f}Β°E<br>"
                        f"Initial: {intensities[0]:.0f} kt<br>"
                        f"Region: {prediction_results['genesis_info']['description']}<br>"
                        "<extra></extra>"
                    )
                ),
                row=1, col=1
            )
            
            # Create animation frames
            for i in range(len(route_data)):
                frame_lons = lons[:i+1]
                frame_lats = lats[:i+1]
                frame_intensities = intensities[:i+1]
                frame_categories = categories[:i+1]
                frame_hours = hours[:i+1]
                
                # Current position marker
                current_color = enhanced_color_map.get(frame_categories[-1], 'rgb(128,128,128)')
                current_size = 15 + (frame_intensities[-1] / 10)
                
                frame_data = [
                    # Animated track up to current point
                    go.Scattergeo(
                        lon=frame_lons,
                        lat=frame_lats,
                        mode='lines+markers',
                        line=dict(color='blue', width=4),
                        marker=dict(
                            size=[8 + (intensity/15) for intensity in frame_intensities],
                            color=[enhanced_color_map.get(cat, 'rgb(128,128,128)') for cat in frame_categories],
                            opacity=0.8,
                            line=dict(width=1, color='white')
                        ),
                        name='Current Track',
                        showlegend=False
                    ),
                    # Current position highlight
                    go.Scattergeo(
                        lon=[frame_lons[-1]],
                        lat=[frame_lats[-1]],
                        mode='markers',
                        marker=dict(
                            size=current_size,
                            color=current_color,
                            symbol='circle',
                            line=dict(width=3, color='white')
                        ),
                        name='Current Position',
                        showlegend=False,
                        hovertemplate=(
                            f"<b>Hour {route_data[i]['hour']}</b><br>"
                            f"Position: {lats[i]:.1f}Β°N, {lons[i]:.1f}Β°E<br>"
                            f"Intensity: {intensities[i]:.0f} kt<br>"
                            f"Category: {categories[i]}<br>"
                            f"Stage: {stages[i]}<br>"
                            f"Speed: {speeds[i]:.1f} km/h<br>"
                            f"Confidence: {confidences[i]*100:.0f}%<br>"
                            "<extra></extra>"
                        )
                    ),
                    # Animated wind plot
                    go.Scatter(
                        x=frame_hours,
                        y=frame_intensities,
                        mode='lines+markers',
                        line=dict(color='red', width=3),
                        marker=dict(size=6, color='red'),
                        name='Wind Speed',
                        showlegend=False,
                        yaxis='y2'
                    ),
                    # Animated speed plot
                    go.Scatter(
                        x=frame_hours,
                        y=speeds[:i+1],
                        mode='lines+markers',
                        line=dict(color='green', width=2),
                        marker=dict(size=4, color='green'),
                        name='Forward Speed',
                        showlegend=False,
                        yaxis='y3'
                    ),
                    # Animated pressure plot
                    go.Scatter(
                        x=frame_hours,
                        y=pressures[:i+1],
                        mode='lines+markers',
                        line=dict(color='purple', width=2),
                        marker=dict(size=4, color='purple'),
                        name='Pressure',
                        showlegend=False,
                        yaxis='y4'
                    )
                ]
                
                frames.append(go.Frame(
                    data=frame_data,
                    name=str(i),
                    layout=go.Layout(
                        title=f"Storm Development Animation - Hour {route_data[i]['hour']}<br>"
                              f"Intensity: {intensities[i]:.0f} kt | Category: {categories[i]} | Stage: {stages[i]} | Speed: {speeds[i]:.1f} km/h"
                    )
                ))
            
            fig.frames = frames
            
            # Add play/pause controls
            fig.update_layout(
                updatemenus=[
                    {
                        "buttons": [
                            {
                                "args": [None, {"frame": {"duration": 1000, "redraw": True},
                                              "fromcurrent": True, "transition": {"duration": 300}}],
                                "label": "▢️ Play",
                                "method": "animate"
                            },
                            {
                                "args": [[None], {"frame": {"duration": 0, "redraw": True},
                                                "mode": "immediate", "transition": {"duration": 0}}],
                                "label": "⏸️ Pause",
                                "method": "animate"
                            },
                            {
                                "args": [None, {"frame": {"duration": 500, "redraw": True},
                                              "fromcurrent": True, "transition": {"duration": 300}}],
                                "label": "⏩ Fast",
                                "method": "animate"
                            }
                        ],
                        "direction": "left",
                        "pad": {"r": 10, "t": 87},
                        "showactive": False,
                        "type": "buttons",
                        "x": 0.1,
                        "xanchor": "right",
                        "y": 0,
                        "yanchor": "top"
                    }
                ],
                sliders=[{
                    "active": 0,
                    "yanchor": "top",
                    "xanchor": "left",
                    "currentvalue": {
                        "font": {"size": 16},
                        "prefix": "Hour: ",
                        "visible": True,
                        "xanchor": "right"
                    },
                    "transition": {"duration": 300, "easing": "cubic-in-out"},
                    "pad": {"b": 10, "t": 50},
                    "len": 0.9,
                    "x": 0.1,
                    "y": 0,
                    "steps": [
                        {
                            "args": [[str(i)], {"frame": {"duration": 300, "redraw": True},
                                               "mode": "immediate", "transition": {"duration": 300}}],
                            "label": f"H{route_data[i]['hour']}",
                            "method": "animate"
                        }
                        for i in range(0, len(route_data), max(1, len(route_data)//20))  # Limit slider steps
                    ]
                }]
            )
            
        else:
            # Static view with all points
            # Add genesis marker
            fig.add_trace(
                go.Scattergeo(
                    lon=[lons[0]],
                    lat=[lats[0]],
                    mode='markers',
                    marker=dict(
                        size=25,
                        color='gold',
                        symbol='star',
                        line=dict(width=3, color='black')
                    ),
                    name='Genesis',
                    showlegend=True,
                    hovertemplate=(
                        f"<b>GENESIS</b><br>"
                        f"Position: {lats[0]:.1f}Β°N, {lons[0]:.1f}Β°E<br>"
                        f"Initial: {intensities[0]:.0f} kt<br>"
                        "<extra></extra>"
                    )
                ),
                row=1, col=1
            )
            
            # Add full track with intensity coloring
            for i in range(0, len(route_data), max(1, len(route_data)//50)):  # Sample points for performance
                point = route_data[i]
                color = enhanced_color_map.get(point['category'], 'rgb(128,128,128)')
                size = 8 + (point['intensity_kt'] / 12)
                
                fig.add_trace(
                    go.Scattergeo(
                        lon=[point['lon']],
                        lat=[point['lat']],
                        mode='markers',
                        marker=dict(
                            size=size,
                            color=color,
                            opacity=point.get('confidence', 0.8),
                            line=dict(width=1, color='white')
                        ),
                        name=f"Hour {point['hour']}" if i % 10 == 0 else None,
                        showlegend=(i % 10 == 0),
                        hovertemplate=(
                            f"<b>Hour {point['hour']}</b><br>"
                            f"Position: {point['lat']:.1f}Β°N, {point['lon']:.1f}Β°E<br>"
                            f"Intensity: {point['intensity_kt']:.0f} kt<br>"
                            f"Category: {point['category']}<br>"
                            f"Stage: {point.get('development_stage', 'Unknown')}<br>"
                            f"Speed: {point.get('forward_speed_kmh', 15):.1f} km/h<br>"
                            "<extra></extra>"
                        )
                    ),
                    row=1, col=1
                )
            
            # Connect points with track line
            fig.add_trace(
                go.Scattergeo(
                    lon=lons,
                    lat=lats,
                    mode='lines',
                    line=dict(color='black', width=3),
                    name='Forecast Track',
                    showlegend=True
                ),
                row=1, col=1
            )
        
        # Add static intensity, speed, and pressure plots
        # Wind speed plot
        fig.add_trace(
            go.Scatter(
                x=hours,
                y=intensities,
                mode='lines+markers',
                line=dict(color='red', width=3),
                marker=dict(size=6, color='red'),
                name='Wind Speed',
                showlegend=False
            ),
            row=2, col=1
        )
        
        # Add category threshold lines
        thresholds = [34, 64, 83, 96, 113, 137]
        threshold_names = ['TS', 'C1', 'C2', 'C3', 'C4', 'C5']
        
        for thresh, name in zip(thresholds, threshold_names):
            fig.add_trace(
                go.Scatter(
                    x=[min(hours), max(hours)],
                    y=[thresh, thresh],
                    mode='lines',
                    line=dict(color='gray', width=1, dash='dash'),
                    name=name,
                    showlegend=False,
                    hovertemplate=f"{name} Threshold: {thresh} kt<extra></extra>"
                ),
                row=2, col=1
            )
        
        # Forward speed plot
        fig.add_trace(
            go.Scatter(
                x=hours,
                y=speeds,
                mode='lines+markers',
                line=dict(color='green', width=2),
                marker=dict(size=4, color='green'),
                name='Forward Speed',
                showlegend=False
            ),
            row=2, col=2
        )
        
        # Add uncertainty cone if requested
        if show_uncertainty and len(route_data) > 1:
            uncertainty_lats_upper = []
            uncertainty_lats_lower = []
            uncertainty_lons_upper = []
            uncertainty_lons_lower = []
            
            for i, point in enumerate(route_data):
                # Uncertainty grows with time and decreases with confidence
                base_uncertainty = 0.4 + (i / len(route_data)) * 1.8
                confidence_factor = point.get('confidence', 0.8)
                uncertainty = base_uncertainty / confidence_factor
                
                uncertainty_lats_upper.append(point['lat'] + uncertainty)
                uncertainty_lats_lower.append(point['lat'] - uncertainty)
                uncertainty_lons_upper.append(point['lon'] + uncertainty)
                uncertainty_lons_lower.append(point['lon'] - uncertainty)
            
            uncertainty_lats = uncertainty_lats_upper + uncertainty_lats_lower[::-1]
            uncertainty_lons = uncertainty_lons_upper + uncertainty_lons_lower[::-1]
            
            fig.add_trace(
                go.Scattergeo(
                    lon=uncertainty_lons,
                    lat=uncertainty_lats,
                    mode='lines',
                    fill='toself',
                    fillcolor='rgba(128,128,128,0.15)',
                    line=dict(color='rgba(128,128,128,0.4)', width=1),
                    name='Uncertainty Cone',
                    showlegend=True
                ),
                row=1, col=1
            )
        
        # Enhanced layout
        fig.update_layout(
            title=f"Comprehensive Storm Development Analysis<br><sub>Starting from {prediction_results['genesis_info']['description']}</sub>",
            height=1000,  # Taller for better subplot visibility
            width=1400,   # Wider
            showlegend=True
        )
        
        # Update geo layout
        fig.update_geos(
            projection_type="natural earth",
            showland=True,
            landcolor="LightGray",
            showocean=True,
            oceancolor="LightBlue",
            showcoastlines=True,
            coastlinecolor="DarkGray",
            showlakes=True,
            lakecolor="LightBlue",
            center=dict(lat=np.mean(lats), lon=np.mean(lons)),
            projection_scale=2.0,
            row=1, col=1
        )
        
        # Update subplot axes
        fig.update_xaxes(title_text="Forecast Hour", row=2, col=1)
        fig.update_yaxes(title_text="Wind Speed (kt)", row=2, col=1)
        fig.update_xaxes(title_text="Forecast Hour", row=2, col=2)
        fig.update_yaxes(title_text="Forward Speed (km/h)", row=2, col=2)
        
        # Generate enhanced forecast text
        current = prediction_results['current_prediction']
        genesis_info = prediction_results['genesis_info']
        
        # Calculate some statistics
        max_intensity = max(intensities)
        max_intensity_time = hours[intensities.index(max_intensity)]
        avg_speed = np.mean(speeds)
        
        forecast_text = f"""
COMPREHENSIVE STORM DEVELOPMENT FORECAST
{'='*65}

GENESIS CONDITIONS:
β€’ Region: {current.get('genesis_region', 'Unknown')}
β€’ Description: {genesis_info['description']}
β€’ Starting Position: {lats[0]:.1f}Β°N, {lons[0]:.1f}Β°E
β€’ Initial Intensity: {current['intensity_kt']:.0f} kt (Tropical Depression)
β€’ Genesis Pressure: {current.get('pressure_hpa', 1008):.0f} hPa

STORM CHARACTERISTICS:
β€’ Peak Intensity: {max_intensity:.0f} kt at Hour {max_intensity_time}
β€’ Average Forward Speed: {avg_speed:.1f} km/h
β€’ Total Distance: {sum([speeds[i]/6 for i in range(len(speeds))]):.0f} km
β€’ Final Position: {lats[-1]:.1f}Β°N, {lons[-1]:.1f}Β°E
β€’ Forecast Duration: {hours[-1]} hours ({hours[-1]/24:.1f} days)

DEVELOPMENT TIMELINE:
β€’ Hour 0 (Genesis): {intensities[0]:.0f} kt - {categories[0]}
β€’ Hour 24: {intensities[min(4, len(intensities)-1)]:.0f} kt - {categories[min(4, len(categories)-1)]}
β€’ Hour 48: {intensities[min(8, len(intensities)-1)]:.0f} kt - {categories[min(8, len(categories)-1)]}
β€’ Hour 72: {intensities[min(12, len(intensities)-1)]:.0f} kt - {categories[min(12, len(categories)-1)]}
β€’ Final: {intensities[-1]:.0f} kt - {categories[-1]}

MOTION ANALYSIS:
β€’ Initial Motion: {speeds[0]:.1f} km/h
β€’ Peak Speed: {max(speeds):.1f} km/h at Hour {hours[speeds.index(max(speeds))]}
β€’ Final Motion: {speeds[-1]:.1f} km/h

CONFIDENCE ASSESSMENT:
β€’ Genesis Likelihood: {prediction_results['confidence_scores'].get('genesis', 0.85)*100:.0f}%
β€’ 24-hour Track: {prediction_results['confidence_scores'].get('position_24h', 0.85)*100:.0f}%
β€’ 48-hour Track: {prediction_results['confidence_scores'].get('position_48h', 0.75)*100:.0f}%
β€’ 72-hour Track: {prediction_results['confidence_scores'].get('position_72h', 0.65)*100:.0f}%
β€’ Long-term: {prediction_results['confidence_scores'].get('long_term', 0.50)*100:.0f}%

FEATURES:
{"βœ… Animation Enabled - Use controls to watch development" if enable_animation else "πŸ“Š Static Analysis - All time steps displayed"}
βœ… Realistic Forward Speeds (15-25 km/h typical)
βœ… Environmental Coupling (ENSO, SST, Shear)
βœ… Multi-stage Development Cycle
βœ… Uncertainty Quantification

MODEL: {prediction_results['model_info']}
        """
        
        return fig, forecast_text.strip()
        
    except Exception as e:
        error_msg = f"Error creating comprehensive visualization: {str(e)}"
        logging.error(error_msg)
        import traceback
        traceback.print_exc()
        return None, error_msg

# -----------------------------
# Regression Functions (Original)
# -----------------------------

def perform_wind_regression(start_year, start_month, end_year, end_month):
    """Perform wind regression analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI'])
    data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['severe_typhoon']
    try:
        model = sm.Logit(y, X).fit(disp=0)
        beta_1 = model.params['ONI']
        exp_beta_1 = np.exp(beta_1)
        p_value = model.pvalues['ONI']
        return f"Wind Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
    except Exception as e:
        return f"Wind Regression Error: {e}"

def perform_pressure_regression(start_year, start_month, end_year, end_month):
    """Perform pressure regression analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI'])
    data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['intense_typhoon']
    try:
        model = sm.Logit(y, X).fit(disp=0)
        beta_1 = model.params['ONI']
        exp_beta_1 = np.exp(beta_1)
        p_value = model.pvalues['ONI']
        return f"Pressure Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
    except Exception as e:
        return f"Pressure Regression Error: {e}"

def perform_longitude_regression(start_year, start_month, end_year, end_month):
    """Perform longitude regression analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI'])
    data['western_typhoon'] = (data['LON']<=140).astype(int)
    X = sm.add_constant(data['ONI'])
    y = data['western_typhoon']
    try:
        model = sm.OLS(y, sm.add_constant(X)).fit()
        beta_1 = model.params['ONI']
        exp_beta_1 = np.exp(beta_1)
        p_value = model.pvalues['ONI']
        return f"Longitude Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
    except Exception as e:
        return f"Longitude Regression Error: {e}"

# -----------------------------
# Visualization Functions (Enhanced)
# -----------------------------

def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get full typhoon tracks"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    unique_storms = filtered_data['SID'].unique()
    count = len(unique_storms)
    fig = go.Figure()
    for sid in unique_storms:
        storm_data = typhoon_data[typhoon_data['SID']==sid]
        if storm_data.empty:
            continue
        name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed"
        basin = storm_data['SID'].iloc[0][:2]
        storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0]
        color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green')
        fig.add_trace(go.Scattergeo(
            lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
            name=f"{name} ({basin})",
            line=dict(width=1.5, color=color), hoverinfo="name"
        ))
    if typhoon_search:
        search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if search_mask.any():
            for sid in typhoon_data[search_mask]['SID'].unique():
                storm_data = typhoon_data[typhoon_data['SID']==sid]
                fig.add_trace(go.Scattergeo(
                    lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
                    name=f"MATCHED: {storm_data['NAME'].iloc[0]}",
                    line=dict(width=3, color='yellow'),
                    marker=dict(size=5), hoverinfo="name"
                ))
    fig.update_layout(
        title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
        geo=dict(
            projection_type='natural earth',
            showland=True,
            showcoastlines=True,
            landcolor='rgb(243,243,243)',
            countrycolor='rgb(204,204,204)',
            coastlinecolor='rgb(204,204,204)',
            center=dict(lon=140, lat=20),
            projection_scale=3
        ),
        legend_title="Typhoons by ENSO Phase",
        showlegend=True,
        height=700
    )
    fig.add_annotation(
        x=0.02, y=0.98, xref="paper", yref="paper",
        text="Red: El NiΓ±o, Blue: La Nina, Green: Neutral",
        showarrow=False, align="left",
        bgcolor="rgba(255,255,255,0.8)"
    )
    return fig, f"Total typhoons displayed: {count}"

def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get wind analysis with enhanced categorization"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    
    fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
                     hover_data=['NAME','Year','Category'],
                     title='Wind Speed vs ONI',
                     labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'},
                     color_discrete_map=enhanced_color_map)
    
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
            ))
    
    regression = perform_wind_regression(start_year, start_month, end_year, end_month)
    return fig, regression

def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get pressure analysis with enhanced categorization"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    
    fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category',
                     hover_data=['NAME','Year','Category'],
                     title='Pressure vs ONI',
                     labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'},
                     color_discrete_map=enhanced_color_map)
    
    if typhoon_search:
        mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
        if mask.any():
            fig.add_trace(go.Scatter(
                x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'],
                mode='markers', marker=dict(size=10, color='red', symbol='star'),
                name=f'Matched: {typhoon_search}',
                text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
            ))
    
    regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
    return fig, regression

def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
    """Get longitude analysis"""
    start_date = datetime(start_year, start_month, 1)
    end_date = datetime(end_year, end_month, 28)
    filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
    filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
    if enso_phase != 'all':
        filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
    
    fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
                     title='Typhoon Generation Longitude vs ONI (All Years)')
    
    if len(filtered_data) > 1:
        X = np.array(filtered_data['LON']).reshape(-1,1)
        y = filtered_data['ONI']
        try:
            model = sm.OLS(y, sm.add_constant(X)).fit()
            y_pred = model.predict(sm.add_constant(X))
            fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
            slope = model.params[1]
            slopes_text = f"All Years Slope: {slope:.4f}"
        except Exception as e:
            slopes_text = f"Regression Error: {e}"
    else:
        slopes_text = "Insufficient data for regression"
    
    regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
    return fig, slopes_text, regression

def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
    """Categorize typhoon by standard with enhanced TD support - FIXED for matplotlib"""
    if pd.isna(wind_speed):
        return 'Tropical Depression', '#808080'
    
    if standard=='taiwan':
        # Taiwan standard uses m/s, convert if needed
        if wind_speed > 50:  # Likely in knots, convert to m/s
            wind_speed_ms = wind_speed * 0.514444
        else:
            wind_speed_ms = wind_speed
            
        if wind_speed_ms >= 51.0:
            return 'Strong Typhoon', '#FF0000'  # Red
        elif wind_speed_ms >= 33.7:
            return 'Medium Typhoon', '#FFA500'  # Orange
        elif wind_speed_ms >= 17.2:
            return 'Mild Typhoon', '#FFFF00'   # Yellow
        return 'Tropical Depression', '#808080'  # Gray
    else:
        # Atlantic standard in knots
        if wind_speed >= 137:
            return 'C5 Super Typhoon', '#FF0000'      # Red
        elif wind_speed >= 113:
            return 'C4 Very Strong Typhoon', '#FFA500' # Orange
        elif wind_speed >= 96:
            return 'C3 Strong Typhoon', '#FFFF00'     # Yellow
        elif wind_speed >= 83:
            return 'C2 Typhoon', '#00FF00'            # Green
        elif wind_speed >= 64:
            return 'C1 Typhoon', '#00FFFF'            # Cyan
        elif wind_speed >= 34:
            return 'Tropical Storm', '#0000FF'        # Blue
        return 'Tropical Depression', '#808080'       # Gray

# -----------------------------
# ENHANCED: Animation Functions with Taiwan Standard Support
# -----------------------------

def get_available_years(typhoon_data):
    """Get all available years including 2025 - with error handling"""
    try:
        if typhoon_data is None or typhoon_data.empty:
            return [str(year) for year in range(2000, 2026)]
            
        if 'ISO_TIME' in typhoon_data.columns:
            years = typhoon_data['ISO_TIME'].dt.year.dropna().unique()
        elif 'SEASON' in typhoon_data.columns:
            years = typhoon_data['SEASON'].dropna().unique()
        else:
            years = range(2000, 2026)  # Default range including 2025
        
        # Convert to strings and sort
        year_strings = sorted([str(int(year)) for year in years if not pd.isna(year)])
        
        # Ensure we have at least some years
        if not year_strings:
            return [str(year) for year in range(2000, 2026)]
            
        return year_strings
        
    except Exception as e:
        print(f"Error in get_available_years: {e}")
        return [str(year) for year in range(2000, 2026)]

def update_typhoon_options_enhanced(year, basin):
    """Enhanced typhoon options with TD support and 2025 data"""
    try:
        year = int(year)
        
        # Filter by year - handle both ISO_TIME and SEASON columns
        if 'ISO_TIME' in typhoon_data.columns:
            year_mask = typhoon_data['ISO_TIME'].dt.year == year
        elif 'SEASON' in typhoon_data.columns:
            year_mask = typhoon_data['SEASON'] == year
        else:
            # Fallback - try to extract year from SID or other fields
            year_mask = typhoon_data.index >= 0  # Include all data as fallback
        
        year_data = typhoon_data[year_mask].copy()
        
        # Filter by basin if specified
        if basin != "All Basins":
            basin_code = basin.split(' - ')[0] if ' - ' in basin else basin[:2]
            if 'SID' in year_data.columns:
                year_data = year_data[year_data['SID'].str.startswith(basin_code, na=False)]
            elif 'BASIN' in year_data.columns:
                year_data = year_data[year_data['BASIN'] == basin_code]
        
        if year_data.empty:
            return gr.update(choices=["No storms found"], value=None)
        
        # Get unique storms - include ALL intensities (including TD)
        storms = year_data.groupby('SID').agg({
            'NAME': 'first',
            'USA_WIND': 'max'
        }).reset_index()
        
        # Enhanced categorization including TD
        storms['category'] = storms['USA_WIND'].apply(categorize_typhoon_enhanced)
        
        # Create options with category information
        options = []
        for _, storm in storms.iterrows():
            name = storm['NAME'] if pd.notna(storm['NAME']) and storm['NAME'] != '' else 'UNNAMED'
            sid = storm['SID']
            category = storm['category']
            max_wind = storm['USA_WIND'] if pd.notna(storm['USA_WIND']) else 0
            
            option = f"{name} ({sid}) - {category} ({max_wind:.0f}kt)"
            options.append(option)
        
        if not options:
            return gr.update(choices=["No storms found"], value=None)
        
        return gr.update(choices=sorted(options), value=options[0])
        
    except Exception as e:
        print(f"Error in update_typhoon_options_enhanced: {e}")
        return gr.update(choices=["Error loading storms"], value=None)

def generate_enhanced_track_video(year, typhoon_selection, standard):
    """Enhanced track video generation with TD support, Taiwan standard, and 2025 compatibility"""
    if not typhoon_selection or typhoon_selection == "No storms found":
        return None
    
    try:
        # Extract SID from selection
        sid = typhoon_selection.split('(')[1].split(')')[0]
        
        # Get storm data
        storm_df = typhoon_data[typhoon_data['SID'] == sid].copy()
        if storm_df.empty:
            print(f"No data found for storm {sid}")
            return None
        
        # Sort by time
        if 'ISO_TIME' in storm_df.columns:
            storm_df = storm_df.sort_values('ISO_TIME')
        
        # Extract data for animation
        lats = storm_df['LAT'].astype(float).values
        lons = storm_df['LON'].astype(float).values
        
        if 'USA_WIND' in storm_df.columns:
            winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').fillna(0).values
        else:
            winds = np.full(len(lats), 30)  # Default TD strength
        
        # Enhanced metadata
        storm_name = storm_df['NAME'].iloc[0] if pd.notna(storm_df['NAME'].iloc[0]) else "UNNAMED"
        season = storm_df['SEASON'].iloc[0] if 'SEASON' in storm_df.columns else year
        
        print(f"Generating video for {storm_name} ({sid}) with {len(lats)} track points using {standard} standard")
        
        # Create figure with enhanced map
        fig, ax = plt.subplots(figsize=(16, 10), subplot_kw={'projection': ccrs.PlateCarree()})
        
        # Enhanced map features
        ax.stock_img()
        ax.add_feature(cfeature.COASTLINE, linewidth=0.8)
        ax.add_feature(cfeature.BORDERS, linewidth=0.5)
        ax.add_feature(cfeature.OCEAN, color='lightblue', alpha=0.5)
        ax.add_feature(cfeature.LAND, color='lightgray', alpha=0.5)
        
        # Set extent based on track
        padding = 5
        ax.set_extent([
            min(lons) - padding, max(lons) + padding,
            min(lats) - padding, max(lats) + padding
        ])
        
        # Add gridlines
        gl = ax.gridlines(draw_labels=True, alpha=0.3)
        gl.top_labels = gl.right_labels = False
        
        # Title with enhanced info and standard
        ax.set_title(f"{season} {storm_name} ({sid}) Track Animation - {standard.upper()} Standard", 
                    fontsize=18, fontweight='bold')
        
        # Animation elements
        line, = ax.plot([], [], 'b-', linewidth=3, alpha=0.7, label='Track')
        point, = ax.plot([], [], 'o', markersize=15)
        
        # Enhanced info display
        info_box = ax.text(0.02, 0.98, '', transform=ax.transAxes, 
                          fontsize=12, verticalalignment='top',
                          bbox=dict(boxstyle="round,pad=0.5", facecolor='white', alpha=0.9))
        
        # Color legend with both standards - ENHANCED
        legend_elements = []
        
        if standard == 'taiwan':
            categories = ['Tropical Depression', 'Mild Typhoon', 'Medium Typhoon', 'Strong Typhoon']
            for category in categories:
                color = get_taiwan_color(category)
                legend_elements.append(plt.Line2D([0], [0], marker='o', color='w',
                                                markerfacecolor=color, markersize=10, label=category))
        else:
            categories = ['Tropical Depression', 'Tropical Storm', 'C1 Typhoon', 'C2 Typhoon', 
                         'C3 Strong Typhoon', 'C4 Very Strong Typhoon', 'C5 Super Typhoon']
            for category in categories:
                color = get_matplotlib_color(category)
                legend_elements.append(plt.Line2D([0], [0], marker='o', color='w',
                                                markerfacecolor=color, markersize=10, label=category))
        
        ax.legend(handles=legend_elements, loc='upper right', fontsize=10)
        
        def animate(frame):
            try:
                if frame >= len(lats):
                    return line, point, info_box
                
                # Update track line
                line.set_data(lons[:frame+1], lats[:frame+1])
                
                # Update current position with appropriate categorization
                current_wind = winds[frame]
                
                if standard == 'taiwan':
                    category, color = categorize_typhoon_by_standard(current_wind, 'taiwan')
                else:
                    category, color = categorize_typhoon_by_standard(current_wind, 'atlantic')
                
                # Debug print for first few frames
                if frame < 3:
                    print(f"Frame {frame}: Wind={current_wind:.1f}kt, Category={category}, Color={color}, Standard={standard}")
                
                point.set_data([lons[frame]], [lats[frame]])
                point.set_color(color)
                point.set_markersize(10 + current_wind/8)  # Size based on intensity
                
                # Enhanced info display with standard information
                if 'ISO_TIME' in storm_df.columns and frame < len(storm_df):
                    current_time = storm_df.iloc[frame]['ISO_TIME']
                    time_str = current_time.strftime('%Y-%m-%d %H:%M UTC') if pd.notna(current_time) else 'Unknown'
                else:
                    time_str = f"Step {frame+1}"
                
                # Convert wind speed for Taiwan standard display
                if standard == 'taiwan':
                    wind_ms = current_wind * 0.514444  # Convert to m/s for display
                    wind_display = f"{current_wind:.0f} kt ({wind_ms:.1f} m/s)"
                else:
                    wind_display = f"{current_wind:.0f} kt"
                
                info_text = (
                    f"Storm: {storm_name}\n"
                    f"Time: {time_str}\n"
                    f"Position: {lats[frame]:.1f}Β°N, {lons[frame]:.1f}Β°E\n"
                    f"Max Wind: {wind_display}\n"
                    f"Category: {category}\n"
                    f"Standard: {standard.upper()}\n"
                    f"Frame: {frame+1}/{len(lats)}"
                )
                info_box.set_text(info_text)
                
                return line, point, info_box
                
            except Exception as e:
                print(f"Error in animate frame {frame}: {e}")
                return line, point, info_box
        
        # Create animation
        anim = animation.FuncAnimation(
            fig, animate, frames=len(lats),
            interval=400, blit=False, repeat=True  # Slightly slower for better viewing
        )
        
        # Save animation
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4', 
                                              dir=tempfile.gettempdir())
        
        # Enhanced writer settings
        writer = animation.FFMpegWriter(
            fps=3, bitrate=2000, codec='libx264',  # Slower FPS for better visibility
            extra_args=['-pix_fmt', 'yuv420p']  # Better compatibility
        )
        
        print(f"Saving animation to {temp_file.name}")
        anim.save(temp_file.name, writer=writer, dpi=120)  # Higher DPI for better quality
        plt.close(fig)
        
        print(f"Video generated successfully: {temp_file.name}")
        return temp_file.name
        
    except Exception as e:
        print(f"Error generating video: {e}")
        import traceback
        traceback.print_exc()
        return None

# Simplified wrapper for backward compatibility - FIXED
def simplified_track_video(year, basin, typhoon, standard):
    """Simplified track video function with fixed color handling"""
    if not typhoon:
        return None
    return generate_enhanced_track_video(year, typhoon, standard)

# -----------------------------
# Load & Process Data
# -----------------------------

# Global variables initialization
oni_data = None
typhoon_data = None
merged_data = None

def initialize_data():
    """Initialize all data safely"""
    global oni_data, typhoon_data, merged_data
    try:
        logging.info("Starting data loading process...")
        update_oni_data()
        oni_data, typhoon_data = load_data_fixed(ONI_DATA_PATH, TYPHOON_DATA_PATH)
        
        if oni_data is not None and typhoon_data is not None:
            oni_long = process_oni_data(oni_data)
            typhoon_max = process_typhoon_data(typhoon_data)
            merged_data = merge_data(oni_long, typhoon_max)
            logging.info("Data loading complete.")
        else:
            logging.error("Failed to load required data")
            # Create minimal fallback data
            oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 
                                   'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 
                                   'Oct': [0], 'Nov': [0], 'Dec': [0]})
            typhoon_data = create_fallback_typhoon_data()
            oni_long = process_oni_data(oni_data)
            typhoon_max = process_typhoon_data(typhoon_data)
            merged_data = merge_data(oni_long, typhoon_max)
    except Exception as e:
        logging.error(f"Error during data initialization: {e}")
        # Create minimal fallback data
        oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 
                               'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 
                               'Oct': [0], 'Nov': [0], 'Dec': [0]})
        typhoon_data = create_fallback_typhoon_data()
        oni_long = process_oni_data(oni_data)
        typhoon_max = process_typhoon_data(typhoon_data)
        merged_data = merge_data(oni_long, typhoon_max)

# Initialize data
initialize_data()

# -----------------------------
# ENHANCED: Gradio Interface with Fixed Route Visualization and Enhanced Features
# -----------------------------

def create_interface():
    """Create the enhanced Gradio interface with robust error handling"""
    try:
        # Ensure data is available
        if oni_data is None or typhoon_data is None or merged_data is None:
            logging.warning("Data not properly loaded, creating minimal interface")
            return create_minimal_fallback_interface()
            
        # Get safe data statistics
        try:
            total_storms = len(typhoon_data['SID'].unique()) if 'SID' in typhoon_data.columns else 0
            total_records = len(typhoon_data)
            available_years = get_available_years(typhoon_data)
            year_range_display = f"{available_years[0]} - {available_years[-1]}" if available_years else "Unknown"
        except Exception as e:
            logging.error(f"Error getting data statistics: {e}")
            total_storms = 0
            total_records = 0
            year_range_display = "Unknown"
            available_years = [str(year) for year in range(2000, 2026)]

        with gr.Blocks(title="Enhanced Typhoon Analysis Platform", theme=gr.themes.Soft()) as demo:
            gr.Markdown("# πŸŒͺ️ Enhanced Typhoon Analysis Platform")
            gr.Markdown("**Advanced ML clustering, route predictions, and comprehensive tropical cyclone analysis including Tropical Depressions**")
            
            with gr.Tab("🏠 Overview"):
                overview_text = f"""
                ## Welcome to the Enhanced Typhoon Analysis Dashboard

                This dashboard provides comprehensive analysis of typhoon data in relation to ENSO phases with advanced machine learning capabilities.

                ### πŸš€ Enhanced Features:
                - **Advanced ML Clustering**: UMAP/t-SNE storm pattern analysis with separate visualizations
                - **Predictive Routing**: Advanced storm track and intensity forecasting with uncertainty quantification
                - **Complete TD Support**: Now includes Tropical Depressions (< 34 kt)
                - **Taiwan Standard**: Full support for Taiwan meteorological classification system
                - **2025 Data Ready**: Real-time compatibility with current year data
                - **Enhanced Animations**: High-quality storm track visualizations with both standards
                
                ### πŸ“Š Data Status:
                - **ONI Data**: {len(oni_data)} years loaded
                - **Typhoon Data**: {total_records:,} records loaded
                - **Merged Data**: {len(merged_data):,} typhoons with ONI values
                - **Available Years**: {year_range_display}
                
                ### πŸ”§ Technical Capabilities:
                - **UMAP Clustering**: {"βœ… Available" if UMAP_AVAILABLE else "⚠️ Limited to t-SNE/PCA"}
                - **AI Predictions**: {"🧠 Deep Learning" if CNN_AVAILABLE else "πŸ”¬ Physics-based"}
                - **Enhanced Categorization**: Tropical Depression to Super Typhoon
                - **Platform**: Optimized for Hugging Face Spaces
                
                ### πŸ“ˆ Research Applications:
                - Climate change impact studies
                - Seasonal forecasting research
                - Storm pattern classification
                - ENSO-typhoon relationship analysis
                - Intensity prediction model development
                """
                gr.Markdown(overview_text)

            with gr.Tab("πŸ”¬ Advanced ML Clustering"):
                gr.Markdown("## 🎯 Storm Pattern Analysis with Separate Visualizations")
                gr.Markdown("**Four separate plots: Clustering, Routes, Pressure Evolution, and Wind Evolution**")
                
                with gr.Row():
                    with gr.Column(scale=2):
                        reduction_method = gr.Dropdown(
                            choices=['UMAP', 't-SNE', 'PCA'], 
                            value='UMAP' if UMAP_AVAILABLE else 't-SNE',
                            label="πŸ” Dimensionality Reduction Method",
                            info="UMAP provides better global structure preservation"
                        )
                    with gr.Column(scale=1):
                        analyze_clusters_btn = gr.Button("πŸš€ Generate All Cluster Analyses", variant="primary", size="lg")
                
                with gr.Row():
                    with gr.Column():
                        cluster_plot = gr.Plot(label="πŸ“Š Storm Clustering Analysis")
                    with gr.Column():
                        routes_plot = gr.Plot(label="πŸ—ΊοΈ Clustered Storm Routes")
                
                with gr.Row():
                    with gr.Column():
                        pressure_plot = gr.Plot(label="🌑️ Pressure Evolution by Cluster")
                    with gr.Column():
                        wind_plot = gr.Plot(label="πŸ’¨ Wind Speed Evolution by Cluster")
                
                with gr.Row():
                    cluster_stats = gr.Textbox(label="πŸ“ˆ Detailed Cluster Statistics", lines=15, max_lines=20)
                
                def run_separate_clustering_analysis(method):
                    try:
                        # Extract features for clustering
                        storm_features = extract_storm_features(typhoon_data)
                        if storm_features is None:
                            return None, None, None, None, "Error: Could not extract storm features"
                        
                        fig_cluster, fig_routes, fig_pressure, fig_wind, stats = create_separate_clustering_plots(
                            storm_features, typhoon_data, method.lower()
                        )
                        return fig_cluster, fig_routes, fig_pressure, fig_wind, stats
                    except Exception as e:
                        import traceback
                        error_details = traceback.format_exc()
                        error_msg = f"Error: {str(e)}\n\nDetails:\n{error_details}"
                        return None, None, None, None, error_msg
                
                analyze_clusters_btn.click(
                    fn=run_separate_clustering_analysis,
                    inputs=[reduction_method],
                    outputs=[cluster_plot, routes_plot, pressure_plot, wind_plot, cluster_stats]
                )
                
                cluster_info_text = """
                ### πŸ“Š Enhanced Clustering Features:
                - **Separate Visualizations**: Four distinct plots for comprehensive analysis
                - **Multi-dimensional Analysis**: Uses 15+ storm characteristics including intensity, track shape, genesis location
                - **Route Visualization**: Geographic storm tracks colored by cluster membership
                - **Temporal Analysis**: Pressure and wind evolution patterns by cluster
                - **DBSCAN Clustering**: Automatic pattern discovery without predefined cluster count
                - **Interactive**: Hover over points to see storm details, zoom and pan all plots
                
                ### 🎯 How to Interpret:
                - **Clustering Plot**: Each dot is a storm positioned by similarity (close = similar characteristics)
                - **Routes Plot**: Actual geographic storm tracks, colored by which cluster they belong to
                - **Pressure Plot**: Shows how pressure changes over time for storms in each cluster
                - **Wind Plot**: Shows wind speed evolution patterns for each cluster
                - **Cluster Colors**: Each cluster gets a unique color across all four visualizations
                """
                gr.Markdown(cluster_info_text)

            with gr.Tab("🌊 Realistic Storm Genesis & Prediction"):
                gr.Markdown("## 🌊 Realistic Typhoon Development from Genesis")
                
                if CNN_AVAILABLE:
                    gr.Markdown("🧠 **Deep Learning models available** - TensorFlow loaded successfully")
                    method_description = "Hybrid CNN-Physics genesis modeling with realistic development cycles"
                else:
                    gr.Markdown("πŸ”¬ **Physics-based models available** - Using climatological relationships")
                    method_description = "Advanced physics-based genesis modeling with environmental coupling"
                
                gr.Markdown(f"**Current Method**: {method_description}")
                gr.Markdown("**🌊 Realistic Genesis**: Select from climatologically accurate development regions")
                gr.Markdown("**πŸ“ˆ TD Starting Point**: Storms begin at realistic Tropical Depression intensities (25-35 kt)")
                gr.Markdown("**🎬 Animation Support**: Watch storm development unfold over time")
                
                with gr.Row():
                    with gr.Column(scale=2):
                        gr.Markdown("### 🌊 Genesis Configuration")
                        genesis_options = list(get_realistic_genesis_locations().keys())
                        genesis_region = gr.Dropdown(
                            choices=genesis_options,
                            value="Western Pacific Main Development Region",
                            label="Typhoon Genesis Region",
                            info="Select realistic development region based on climatology"
                        )
                        
                        # Display selected region info
                        def update_genesis_info(region):
                            locations = get_realistic_genesis_locations()
                            if region in locations:
                                info = locations[region]
                                return f"πŸ“ Location: {info['lat']:.1f}Β°N, {info['lon']:.1f}Β°E\nπŸ“ {info['description']}"
                            return "Select a genesis region"
                        
                        genesis_info_display = gr.Textbox(
                            label="Selected Region Info",
                            lines=2,
                            interactive=False,
                            value=update_genesis_info("Western Pacific Main Development Region")
                        )
                        
                        genesis_region.change(
                            fn=update_genesis_info,
                            inputs=[genesis_region],
                            outputs=[genesis_info_display]
                        )
                        
                        with gr.Row():
                            pred_month = gr.Slider(1, 12, label="Month", value=9, info="Peak season: Jul-Oct")
                            pred_oni = gr.Number(label="ONI Value", value=0.0, info="ENSO index (-3 to 3)")
                        with gr.Row():
                            forecast_hours = gr.Number(
                                label="Forecast Length (hours)", 
                                value=72, 
                                minimum=20,
                                maximum=1000,
                                step=6,
                                info="Extended forecasting: 20-1000 hours (42 days max)"
                            )
                            advanced_physics = gr.Checkbox(
                                label="Advanced Physics", 
                                value=True,
                                info="Enhanced environmental modeling"
                            )
                        with gr.Row():
                            show_uncertainty = gr.Checkbox(label="Show Uncertainty Cone", value=True)
                            enable_animation = gr.Checkbox(
                                label="Enable Animation", 
                                value=True,
                                info="Animated storm development vs static view"
                            )
                
                    with gr.Column(scale=1):
                        gr.Markdown("### βš™οΈ Prediction Controls")
                        predict_btn = gr.Button("🌊 Generate Realistic Storm Forecast", variant="primary", size="lg")
                        
                        gr.Markdown("### πŸ“Š Genesis Conditions")
                        current_intensity = gr.Number(label="Genesis Intensity (kt)", interactive=False)
                        current_category = gr.Textbox(label="Initial Category", interactive=False)
                        model_confidence = gr.Textbox(label="Model Info", interactive=False)
                
                with gr.Row():
                    route_plot = gr.Plot(label="πŸ—ΊοΈ Advanced Route & Intensity Forecast")
                
                with gr.Row():
                    forecast_details = gr.Textbox(label="πŸ“‹ Detailed Forecast Summary", lines=20, max_lines=25)
                
                def run_realistic_prediction(region, month, oni, hours, advanced_phys, uncertainty, animation):
                    try:
                        # Run realistic prediction with genesis region
                        results = predict_storm_route_and_intensity_realistic(
                            region, month, oni, 
                            forecast_hours=hours, 
                            use_advanced_physics=advanced_phys
                        )
                        
                        # Extract genesis conditions
                        current = results['current_prediction']
                        intensity = current['intensity_kt']
                        category = current['category']
                        genesis_info = results.get('genesis_info', {})
                        
                        # Create enhanced visualization
                        fig, forecast_text = create_animated_route_visualization(
                            results, uncertainty, animation
                        )
                        
                        model_info = f"{results['model_info']}\nGenesis: {genesis_info.get('description', 'Unknown')}"
                        
                        return (
                            intensity,
                            category,
                            model_info,
                            fig,
                            forecast_text
                        )
                    except Exception as e:
                        error_msg = f"Realistic prediction failed: {str(e)}"
                        logging.error(error_msg)
                        import traceback
                        traceback.print_exc()
                        return (
                            30, "Tropical Depression", f"Prediction failed: {str(e)}", 
                            None, f"Error generating realistic forecast: {str(e)}"
                        )
                
                predict_btn.click(
                    fn=run_realistic_prediction,
                    inputs=[genesis_region, pred_month, pred_oni, forecast_hours, advanced_physics, show_uncertainty, enable_animation],
                    outputs=[current_intensity, current_category, model_confidence, route_plot, forecast_details]
                )
                
                prediction_info_text = """
                ### 🌊 Realistic Storm Genesis Features:
                - **Climatological Genesis Regions**: 10 realistic development zones based on historical data
                - **Tropical Depression Starting Point**: Storms begin at realistic 25-38 kt intensities
                - **Realistic Typhoon Speeds**: Forward motion 15-25 km/h (matching observations)
                - **Extended Time Range**: 20-1000 hours (up to 42 days) with user input control
                - **Comprehensive Animation**: Watch development with wind/speed/pressure plots
                - **Environmental Coupling**: Advanced physics with ENSO, SST, shear, Ξ²-drift, ridge patterns
                
                ### πŸ“Š Enhanced Development Stages:
                - **Genesis (0-24h)**: Initial cyclogenesis at Tropical Depression level
                - **Development (24-72h)**: Rapid intensification in favorable environment (3-6 kt/h)
                - **Mature (72-120h)**: Peak intensity phase with environmental modulation
                - **Extended (120-240h)**: Continued tracking with realistic weakening
                - **Long-term (240h+)**: Extended forecasting for research and planning
                
                ### πŸƒβ€β™‚οΈ Realistic Motion Physics:
                - **Low Latitude (< 20Β°N)**: 12-15 km/h typical speeds
                - **Mid Latitude (20-30Β°N)**: 18-22 km/h moderate speeds  
                - **High Latitude (> 30Β°N)**: 25-30 km/h fast extratropical transition
                - **Intensity Effects**: Stronger storms can move faster in steering flow
                - **Beta Drift**: Coriolis-induced poleward and westward motion
                - **Ridge Interaction**: Realistic recurvature patterns
                
                ### 🌍 Genesis Region Selection:
                - **Western Pacific MDR**: Peak activity zone near Guam (12.5Β°N, 145Β°E)
                - **South China Sea**: Secondary development region (15Β°N, 115Β°E)
                - **Philippine Sea**: Recurving storm region (18Β°N, 135Β°E)
                - **Marshall Islands**: Eastern development zone (8Β°N, 165Β°E)
                - **Monsoon Trough**: Monsoon-driven genesis (10Β°N, 130Β°E)
                - **Other Basins**: Bay of Bengal, Eastern Pacific, Atlantic options
                
                ### 🎬 Enhanced Animation Features:
                - **Real-time Development**: Watch TD evolve to typhoon intensity
                - **Multi-plot Display**: Track + Wind Speed + Forward Speed plots
                - **Interactive Controls**: Play/pause/fast buttons and time slider
                - **Stage Tracking**: Visual indicators for development phases
                - **Speed Analysis**: Forward motion tracking throughout lifecycle
                - **Performance Optimized**: Smooth animation even for 1000+ hour forecasts
                
                ### πŸ”¬ Advanced Physics Model:
                - **Realistic Intensification**: 3-6 kt/h development rates in favorable conditions
                - **Environmental Coupling**: SST, wind shear, Coriolis effects
                - **Steering Flow**: Subtropical ridge position and ENSO modulation
                - **Motion Variability**: Growing uncertainty with forecast time
                - **Pressure-Wind Relationship**: Realistic intensity-pressure coupling
                - **Long-term Climatology**: Extended forecasting using seasonal patterns
                """
                gr.Markdown(prediction_info_text)

            with gr.Tab("πŸ—ΊοΈ Track Visualization"):
                with gr.Row():
                    start_year = gr.Number(label="Start Year", value=2020)
                    start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    end_year = gr.Number(label="End Year", value=2025)
                    end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    typhoon_search = gr.Textbox(label="Typhoon Search")
                analyze_btn = gr.Button("Generate Tracks")
                tracks_plot = gr.Plot()
                typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
                analyze_btn.click(
                    fn=get_full_tracks,
                    inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
                    outputs=[tracks_plot, typhoon_count]
                )
            
            with gr.Tab("πŸ’¨ Wind Analysis"):
                with gr.Row():
                    wind_start_year = gr.Number(label="Start Year", value=2020)
                    wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    wind_end_year = gr.Number(label="End Year", value=2024)
                    wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    wind_typhoon_search = gr.Textbox(label="Typhoon Search")
                wind_analyze_btn = gr.Button("Generate Wind Analysis")
                wind_scatter = gr.Plot()
                wind_regression_results = gr.Textbox(label="Wind Regression Results")
                wind_analyze_btn.click(
                    fn=get_wind_analysis,
                    inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
                    outputs=[wind_scatter, wind_regression_results]
                )
            
            with gr.Tab("🌑️ Pressure Analysis"):
                with gr.Row():
                    pressure_start_year = gr.Number(label="Start Year", value=2020)
                    pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    pressure_end_year = gr.Number(label="End Year", value=2024)
                    pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
                pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
                pressure_scatter = gr.Plot()
                pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
                pressure_analyze_btn.click(
                    fn=get_pressure_analysis,
                    inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
                    outputs=[pressure_scatter, pressure_regression_results]
                )
            
            with gr.Tab("🌏 Longitude Analysis"):
                with gr.Row():
                    lon_start_year = gr.Number(label="Start Year", value=2020)
                    lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
                    lon_end_year = gr.Number(label="End Year", value=2020)
                    lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
                    lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
                    lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
                lon_analyze_btn = gr.Button("Generate Longitude Analysis")
                regression_plot = gr.Plot()
                slopes_text = gr.Textbox(label="Regression Slopes")
                lon_regression_results = gr.Textbox(label="Longitude Regression Results")
                lon_analyze_btn.click(
                    fn=get_longitude_analysis,
                    inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
                    outputs=[regression_plot, slopes_text, lon_regression_results]
                )
            
            with gr.Tab("🎬 Enhanced Track Animation"):
                gr.Markdown("## πŸŽ₯ High-Quality Storm Track Visualization (Atlantic & Taiwan Standards)")
                
                with gr.Row():
                    year_dropdown = gr.Dropdown(
                        label="Year",
                        choices=available_years,
                        value=available_years[-1] if available_years else "2024"
                    )
                    basin_dropdown = gr.Dropdown(
                        label="Basin",
                        choices=["All Basins", "WP - Western Pacific", "EP - Eastern Pacific", "NA - North Atlantic"],
                        value="All Basins"
                    )
                
                with gr.Row():
                    typhoon_dropdown = gr.Dropdown(label="Storm Selection (All Categories Including TD)")
                    standard_dropdown = gr.Dropdown(
                        label="🎌 Classification Standard",
                        choices=['atlantic', 'taiwan'], 
                        value='atlantic',
                        info="Atlantic: International standard | Taiwan: Local meteorological standard"
                    )
                
                generate_video_btn = gr.Button("🎬 Generate Enhanced Animation", variant="primary")
                video_output = gr.Video(label="Storm Track Animation")
                
                # Update storm options when year or basin changes
                for input_comp in [year_dropdown, basin_dropdown]:
                    input_comp.change(
                        fn=update_typhoon_options_enhanced,
                        inputs=[year_dropdown, basin_dropdown],
                        outputs=[typhoon_dropdown]
                    )
                
                # Generate video
                generate_video_btn.click(
                    fn=generate_enhanced_track_video,
                    inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
                    outputs=[video_output]
                )
                
                animation_info_text = """
                ### 🎬 Enhanced Animation Features:
                - **Dual Standards**: Full support for both Atlantic and Taiwan classification systems
                - **Full TD Support**: Now displays Tropical Depressions (< 34 kt) in gray
                - **2025 Compatibility**: Complete support for current year data
                - **Enhanced Maps**: Better cartographic projections with terrain features
                - **Smart Scaling**: Storm symbols scale dynamically with intensity
                - **Real-time Info**: Live position, time, and meteorological data display
                - **Professional Styling**: Publication-quality animations with proper legends
                - **Optimized Export**: Fast rendering with web-compatible video formats
                
                ### 🎌 Taiwan Standard Features:
                - **m/s Display**: Shows both knots and meters per second
                - **Local Categories**: TD β†’ Mild β†’ Medium β†’ Strong Typhoon
                - **Color Coding**: Gray β†’ Yellow β†’ Orange β†’ Red
                - **CWB Compatible**: Matches Central Weather Bureau classifications
                """
                gr.Markdown(animation_info_text)

            with gr.Tab("πŸ“Š Data Statistics & Insights"):
                gr.Markdown("## πŸ“ˆ Comprehensive Dataset Analysis")
                
                # Create enhanced data summary
                try:
                    if len(typhoon_data) > 0:
                        # Storm category distribution
                        storm_cats = typhoon_data.groupby('SID')['USA_WIND'].max().apply(categorize_typhoon_enhanced)
                        cat_counts = storm_cats.value_counts()
                        
                        # Create distribution chart with enhanced colors
                        fig_dist = px.bar(
                            x=cat_counts.index,
                            y=cat_counts.values,
                            title="Storm Intensity Distribution (Including Tropical Depressions)",
                            labels={'x': 'Category', 'y': 'Number of Storms'},
                            color=cat_counts.index,
                            color_discrete_map=enhanced_color_map
                        )
                        
                        # Seasonal distribution
                        if 'ISO_TIME' in typhoon_data.columns:
                            seasonal_data = typhoon_data.copy()
                            seasonal_data['Month'] = seasonal_data['ISO_TIME'].dt.month
                            monthly_counts = seasonal_data.groupby(['Month', 'SID']).size().groupby('Month').size()
                            
                            fig_seasonal = px.bar(
                                x=monthly_counts.index,
                                y=monthly_counts.values,
                                title="Seasonal Storm Distribution",
                                labels={'x': 'Month', 'y': 'Number of Storms'},
                                color=monthly_counts.values,
                                color_continuous_scale='Viridis'
                            )
                        else:
                            fig_seasonal = None
                        
                        # Basin distribution
                        if 'SID' in typhoon_data.columns:
                            basin_data = typhoon_data['SID'].str[:2].value_counts()
                            fig_basin = px.pie(
                                values=basin_data.values,
                                names=basin_data.index,
                                title="Distribution by Basin"
                            )
                        else:
                            fig_basin = None
                        
                        with gr.Row():
                            gr.Plot(value=fig_dist)
                        
                        if fig_seasonal:
                            with gr.Row():
                                gr.Plot(value=fig_seasonal)
                        
                        if fig_basin:
                            with gr.Row():
                                gr.Plot(value=fig_basin)
                                
                except Exception as e:
                    gr.Markdown(f"Visualization error: {str(e)}")
                
                # Enhanced statistics - FIXED formatting
                total_storms = len(typhoon_data['SID'].unique()) if 'SID' in typhoon_data.columns else 0
                total_records = len(typhoon_data)
                
                if 'SEASON' in typhoon_data.columns:
                    try:
                        min_year = int(typhoon_data['SEASON'].min())
                        max_year = int(typhoon_data['SEASON'].max())
                        year_range = f"{min_year}-{max_year}"
                        years_covered = typhoon_data['SEASON'].nunique()
                    except (ValueError, TypeError):
                        year_range = "Unknown"
                        years_covered = 0
                else:
                    year_range = "Unknown"
                    years_covered = 0
                
                if 'SID' in typhoon_data.columns:
                    try:
                        basins_available = ', '.join(sorted(typhoon_data['SID'].str[:2].unique()))
                        avg_storms_per_year = total_storms / max(years_covered, 1)
                    except Exception:
                        basins_available = "Unknown"
                        avg_storms_per_year = 0
                else:
                    basins_available = "Unknown"
                    avg_storms_per_year = 0
                
                # TD specific statistics
                try:
                    if 'USA_WIND' in typhoon_data.columns:
                        td_storms = len(typhoon_data[typhoon_data['USA_WIND'] < 34]['SID'].unique())
                        ts_storms = len(typhoon_data[(typhoon_data['USA_WIND'] >= 34) & (typhoon_data['USA_WIND'] < 64)]['SID'].unique())
                        typhoon_storms = len(typhoon_data[typhoon_data['USA_WIND'] >= 64]['SID'].unique())
                        td_percentage = (td_storms / max(total_storms, 1)) * 100
                    else:
                        td_storms = ts_storms = typhoon_storms = 0
                        td_percentage = 0
                except Exception as e:
                    print(f"Error calculating TD statistics: {e}")
                    td_storms = ts_storms = typhoon_storms = 0
                    td_percentage = 0
                
                # Create statistics text safely
                stats_text = f"""
                ### πŸ“Š Enhanced Dataset Summary:
                - **Total Unique Storms**: {total_storms:,}
                - **Total Track Records**: {total_records:,}  
                - **Year Range**: {year_range} ({years_covered} years)
                - **Basins Available**: {basins_available}
                - **Average Storms/Year**: {avg_storms_per_year:.1f}
                
                ### πŸŒͺ️ Storm Category Breakdown:
                - **Tropical Depressions**: {td_storms:,} storms ({td_percentage:.1f}%)
                - **Tropical Storms**: {ts_storms:,} storms
                - **Typhoons (C1-C5)**: {typhoon_storms:,} storms
                
                ### πŸš€ Platform Capabilities:
                - **Complete TD Analysis** - First platform to include comprehensive TD tracking
                - **Dual Classification Systems** - Both Atlantic and Taiwan standards supported
                - **Advanced ML Clustering** - DBSCAN pattern recognition with separate visualizations
                - **Real-time Predictions** - Physics-based and optional CNN intensity forecasting
                - **2025 Data Ready** - Full compatibility with current season data
                - **Enhanced Animations** - Professional-quality storm track videos
                - **Multi-basin Analysis** - Comprehensive Pacific and Atlantic coverage
                
                ### πŸ”¬ Research Applications:
                - Climate change impact studies
                - Seasonal forecasting research
                - Storm pattern classification
                - ENSO-typhoon relationship analysis
                - Intensity prediction model development
                - Cross-regional classification comparisons
                """
                gr.Markdown(stats_text)

        return demo
    except Exception as e:
        logging.error(f"Error creating Gradio interface: {e}")
        import traceback
        traceback.print_exc()
        # Create a minimal fallback interface
        return create_minimal_fallback_interface()

def create_minimal_fallback_interface():
    """Create a minimal fallback interface when main interface fails"""
    with gr.Blocks() as demo:
        gr.Markdown("# Enhanced Typhoon Analysis Platform")
        gr.Markdown("**Notice**: Loading with minimal interface due to data issues.")
        
        with gr.Tab("Status"):
            gr.Markdown("""
            ## Platform Status
            
            The application is running but encountered issues loading the full interface.
            This could be due to:
            - Data loading problems
            - Missing dependencies
            - Configuration issues
            
            ### Available Features:
            - Basic interface is functional
            - Error logs are being generated
            - System is ready for debugging
            
            ### Next Steps:
            1. Check the console logs for detailed error information
            2. Verify all required data files are accessible
            3. Ensure all dependencies are properly installed
            4. Try restarting the application
            """)
        
        with gr.Tab("Debug"):
            gr.Markdown("## Debug Information")
            
            def get_debug_info():
                debug_text = f"""
                Python Environment:
                - Working Directory: {os.getcwd()}
                - Data Path: {DATA_PATH}
                - UMAP Available: {UMAP_AVAILABLE}
                - CNN Available: {CNN_AVAILABLE}
                
                Data Status:
                - ONI Data: {'Loaded' if oni_data is not None else 'Failed'}
                - Typhoon Data: {'Loaded' if typhoon_data is not None else 'Failed'}
                - Merged Data: {'Loaded' if merged_data is not None else 'Failed'}
                
                File Checks:
                - ONI Path Exists: {os.path.exists(ONI_DATA_PATH)}
                - Typhoon Path Exists: {os.path.exists(TYPHOON_DATA_PATH)}
                """
                return debug_text
            
            debug_btn = gr.Button("Get Debug Info")
            debug_output = gr.Textbox(label="Debug Information", lines=15)
            debug_btn.click(fn=get_debug_info, outputs=debug_output)
    
    return demo

# Create and launch the interface
demo = create_interface()

if __name__ == "__main__":
    demo.launch(share=True)  # Enable sharing with public link