Spaces:
Running
Running
File size: 165,618 Bytes
a60f1c0 a1ed77d a60f1c0 6384d58 8c52eff a1ed77d 7fa25f7 efb47b3 4d9b5c3 a74a30d a566db2 84e165d 27f90be 16ed767 b37a702 a60f1c0 b37a702 8c52eff 7513911 a60f1c0 b37a702 4d8869d b37a702 4d8869d b37a702 4d8869d b37a702 08bd0cf 4d8869d b37a702 08bd0cf b37a702 a60f1c0 57cb1ac a60f1c0 87de8af a60f1c0 8ce2887 7513911 473c7a8 eb8c873 473c7a8 efb47b3 87de8af e509f96 473c7a8 e509f96 bc15b27 efb47b3 a60f1c0 b37a702 a60f1c0 f7bff1c b37a702 2af44a9 b37a702 f7bff1c ed262cf f7bff1c ed262cf f7bff1c 8c52eff b37a702 a2d2271 373b768 a2d2271 b37a702 a2d2271 16ed767 a2d2271 b37a702 a2d2271 16ed767 efb47b3 473c7a8 8ce2887 473c7a8 a60f1c0 473c7a8 eb8c873 473c7a8 eb8c873 473c7a8 eb8c873 a60f1c0 473c7a8 efb47b3 eb8c873 473c7a8 eb8c873 473c7a8 efb47b3 473c7a8 b37a702 473c7a8 66c3b07 a7058dd 66c3b07 473c7a8 66c3b07 473c7a8 66c3b07 a7058dd 473c7a8 a7058dd 66c3b07 a7058dd 66c3b07 473c7a8 8ce2887 66c3b07 8ce2887 473c7a8 a7058dd 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 eb8c873 473c7a8 76771b5 5cfd2b7 76771b5 5cfd2b7 473c7a8 5cfd2b7 76771b5 5cfd2b7 76771b5 473c7a8 76771b5 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 5cfd2b7 473c7a8 5cfd2b7 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 76771b5 a566db2 473c7a8 66c3b07 b37a702 66c3b07 473c7a8 66c3b07 473c7a8 66c3b07 473c7a8 eb8c873 473c7a8 eb8c873 a60f1c0 a2d2271 a60f1c0 eb8c873 473c7a8 66c3b07 eb8c873 473c7a8 a60f1c0 473c7a8 eb8c873 a60f1c0 eb8c873 473c7a8 66c3b07 b37a702 eb8c873 473c7a8 a60f1c0 eb8c873 b37a702 66c3b07 b37a702 66c3b07 b37a702 a2d2271 b37a702 ed262cf bb26972 ed262cf b37a702 eb8c873 473c7a8 eb8c873 66c3b07 eb8c873 efb47b3 87de8af 8c52eff b37a702 8c52eff f7bff1c 8c52eff f7bff1c 8c52eff f7bff1c 8c52eff b37a702 8c52eff b37a702 f1b971e 8c52eff f1b971e 8c52eff b37a702 ed262cf 3380de9 b37a702 a1ed77d 8c52eff b37a702 f1b971e b37a702 a1ed77d b37a702 8c52eff b37a702 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf f7bff1c 3380de9 8c52eff ed262cf a1ed77d ed262cf 3380de9 a1ed77d ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 8c52eff ed262cf 3380de9 ed262cf 3380de9 f1b971e 3380de9 ed262cf f1b971e ed262cf 3380de9 ed262cf f7bff1c f1b971e 3380de9 f1b971e 3380de9 ed262cf 3380de9 ed262cf f7bff1c 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf f7bff1c 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf 3380de9 ed262cf b37a702 3380de9 a1ed77d 3380de9 f7bff1c 3380de9 a1ed77d 3380de9 8c52eff 3380de9 8c52eff 3380de9 8c52eff 3380de9 a1ed77d 3380de9 b37a702 ed262cf f7bff1c b37a702 3380de9 8c52eff f7bff1c ed262cf b37a702 8c52eff b37a702 8c52eff 4d8869d 8c52eff 4d8869d 8c52eff 4d8869d 8c52eff 4d8869d 8c52eff 4d8869d 8c52eff 4d8869d 8c52eff 4d8869d 8c52eff 4d8869d 8c52eff 4d8869d 8c52eff 4d8869d 8c52eff 4d8869d 742dc94 365463e 742dc94 4d8869d 365463e 8c52eff 365463e 8c52eff 365463e 742dc94 f1b971e 742dc94 365463e 742dc94 f1b971e 365463e f1b971e 365463e f1b971e 365463e f1b971e 742dc94 8c52eff 742dc94 8c52eff 365463e 742dc94 365463e 742dc94 365463e 8c52eff 742dc94 8c52eff 742dc94 365463e 8c52eff 742dc94 8c52eff f1b971e 8c52eff 742dc94 f1b971e 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 8c52eff 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 8c52eff 742dc94 8c52eff 742dc94 f1b971e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 8c52eff 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 f1b971e 742dc94 365463e 742dc94 f1b971e 742dc94 365463e 742dc94 365463e 8c52eff 742dc94 8c52eff f1b971e 365463e 742dc94 8c52eff 365463e 8c52eff 742dc94 365463e 742dc94 8c52eff 365463e 742dc94 8c52eff 365463e 8c52eff 365463e 8c52eff 365463e 742dc94 8c52eff 365463e 742dc94 8c52eff 365463e 742dc94 8c52eff 742dc94 365463e 8c52eff 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 8c52eff 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 8c52eff 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 8c52eff 742dc94 365463e 8c52eff 365463e 742dc94 365463e 8c52eff 3380de9 8c52eff 742dc94 8c52eff 742dc94 8c52eff 742dc94 365463e 8c52eff 742dc94 365463e 8c52eff 365463e 742dc94 8c52eff 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 8c52eff 4d8869d 742dc94 365463e 3380de9 b37a702 87de8af 473c7a8 1ca7717 473c7a8 1ca7717 a60f1c0 1ca7717 473c7a8 1ca7717 473c7a8 1ca7717 a60f1c0 1ca7717 473c7a8 1ca7717 473c7a8 1ca7717 a60f1c0 1ca7717 473c7a8 a2d2271 87de8af b37a702 87de8af 473c7a8 e6b6548 473c7a8 e6b6548 a60f1c0 e6b6548 ce399c7 e6b6548 a60f1c0 66c3b07 57cb1ac 473c7a8 a60f1c0 e6b6548 87de8af a60f1c0 e6b6548 a60f1c0 e6b6548 87de8af e6b6548 a60f1c0 e6b6548 a60f1c0 e6b6548 87de8af e6b6548 b37a702 8ce2887 b37a702 8ce2887 e6b6548 8ce2887 e6b6548 b37a702 8ce2887 b37a702 8ce2887 e6b6548 8ce2887 e6b6548 473c7a8 8ce2887 e6b6548 8ce2887 e6b6548 a60f1c0 f7bff1c 66c3b07 a60f1c0 ed262cf eb8c873 f7bff1c eb8c873 f7bff1c eb8c873 f7bff1c eb8c873 ed262cf 7fa25f7 f7bff1c 7fa25f7 f7bff1c 7fa25f7 f7bff1c 7fa25f7 f7bff1c 7fa25f7 f7bff1c 7fa25f7 f7bff1c a2d2271 87de8af ed262cf 87de8af 473c7a8 b37a702 e81fdea 15b9748 b37a702 57cb1ac b37a702 473c7a8 b37a702 66c3b07 b37a702 66c3b07 b37a702 66c3b07 b37a702 473c7a8 b37a702 473c7a8 b37a702 473c7a8 b37a702 473c7a8 b37a702 473c7a8 b37a702 473c7a8 b37a702 473c7a8 b37a702 473c7a8 57cb1ac b37a702 ed262cf b37a702 f7bff1c b37a702 ed262cf f7bff1c b37a702 ed262cf b37a702 ed262cf b37a702 ed262cf b37a702 ed262cf b37a702 ed262cf b37a702 ed262cf f7bff1c ed262cf b37a702 ed262cf b37a702 f7bff1c ed262cf f7bff1c ed262cf f7bff1c ed262cf f7bff1c ed262cf f7bff1c ed262cf f7bff1c ed262cf f7bff1c ed262cf f7bff1c ed262cf f7bff1c b37a702 ed262cf b37a702 ed262cf b37a702 f7bff1c ed262cf b37a702 08bd0cf b37a702 08bd0cf f7bff1c b37a702 f7bff1c b37a702 f7bff1c b37a702 611f47d 473c7a8 8ce2887 473c7a8 8ce2887 473c7a8 87de8af ed262cf 87de8af 473c7a8 8ce2887 e81fdea 8ce2887 e81fdea a1ed77d b37a702 8c52eff 8ce2887 8c52eff 2af44a9 b37a702 a60f1c0 b37a702 a60f1c0 8c52eff ed262cf 8c52eff ed262cf 8c52eff ed262cf 8c52eff 2af44a9 b37a702 8c52eff ed262cf b37a702 8c52eff ed262cf b37a702 ed262cf b37a702 ed262cf b37a702 f7bff1c 8c52eff f7bff1c ed262cf b37a702 8c52eff ed262cf b37a702 f7bff1c ed262cf b37a702 ed262cf b37a702 2af44a9 ed262cf 8c52eff ed262cf 8c52eff ed262cf 2af44a9 8ef7489 365463e b37a702 8c52eff 365463e b37a702 8c52eff 365463e 4d8869d 365463e 4d8869d 8c52eff 365463e 8c52eff 365463e 8c52eff 742dc94 f1b971e 742dc94 f1b971e 742dc94 f1b971e 365463e f1b971e 365463e f1b971e 8c52eff 365463e f1b971e 8c52eff 365463e 8c52eff 365463e 4d8869d 8c52eff 4d8869d 8c52eff 365463e 8c52eff 365463e f1b971e 8c52eff 365463e 8c52eff 365463e 8c52eff 365463e 8c52eff 365463e 8c52eff 365463e f1b971e 365463e 8c52eff 365463e 8c52eff 4d8869d 365463e 8c52eff 4d8869d 2af44a9 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 365463e 742dc94 2af44a9 8c52eff 8ce2887 b37a702 8ce2887 b3a513b 8ce2887 8c52eff 8ce2887 b37a702 8ce2887 8c52eff 8ce2887 b37a702 8ce2887 8c52eff 8ce2887 b37a702 8ce2887 b37a702 8ce2887 8c52eff ed262cf b37a702 8ce2887 b37a702 e81fdea b37a702 8ce2887 b37a702 ed262cf b37a702 ed262cf b37a702 8c52eff b37a702 8ce2887 b37a702 2af44a9 8c52eff ed262cf 8c52eff ed262cf 2af44a9 8ce2887 8c52eff f7bff1c 2af44a9 f7bff1c e81fdea f7bff1c e81fdea f7bff1c e81fdea f7bff1c 2af44a9 8c52eff ed262cf 8c52eff f7bff1c ed262cf 2af44a9 f7bff1c 8ce2887 e81fdea 8ce2887 e81fdea 08bd0cf e81fdea 08bd0cf e81fdea 08bd0cf e81fdea 8ce2887 a2d2271 473c7a8 365463e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 |
import os
import argparse
import logging
import pickle
import threading
import time
import warnings
from datetime import datetime, timedelta
from collections import defaultdict
import csv
import json
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning, module='umap')
warnings.filterwarnings('ignore', category=UserWarning, module='sklearn')
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN, KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, r2_score
from scipy.interpolate import interp1d, RBFInterpolator
import statsmodels.api as sm
import requests
import tempfile
import shutil
import xarray as xr
# NEW: Advanced ML imports
try:
import umap.umap_ as umap
UMAP_AVAILABLE = True
except ImportError:
UMAP_AVAILABLE = False
print("UMAP not available - clustering features limited")
# Optional CNN imports with robust error handling
CNN_AVAILABLE = False
try:
# Set environment variables before importing TensorFlow
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress TensorFlow warnings
import tensorflow as tf
from tensorflow.keras import layers, models
# Test if TensorFlow actually works
tf.config.set_visible_devices([], 'GPU') # Disable GPU to avoid conflicts
CNN_AVAILABLE = True
print("TensorFlow successfully loaded - CNN features enabled")
except Exception as e:
CNN_AVAILABLE = False
print(f"TensorFlow not available - CNN features disabled: {str(e)[:100]}...")
try:
import cdsapi
CDSAPI_AVAILABLE = True
except ImportError:
CDSAPI_AVAILABLE = False
import tropycal.tracks as tracks
# -----------------------------
# Configuration and Setup
# -----------------------------
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Remove argument parser to simplify startup
DATA_PATH = '/tmp/typhoon_data' if 'SPACE_ID' in os.environ else tempfile.gettempdir()
# Ensure directory exists and is writable
try:
os.makedirs(DATA_PATH, exist_ok=True)
# Test write permissions
test_file = os.path.join(DATA_PATH, 'test_write.txt')
with open(test_file, 'w') as f:
f.write('test')
os.remove(test_file)
logging.info(f"Data directory is writable: {DATA_PATH}")
except Exception as e:
logging.warning(f"Data directory not writable, using temp dir: {e}")
DATA_PATH = tempfile.mkdtemp()
logging.info(f"Using temporary directory: {DATA_PATH}")
# Update file paths
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv')
# IBTrACS settings
BASIN_FILES = {
'EP': 'ibtracs.EP.list.v04r01.csv',
'NA': 'ibtracs.NA.list.v04r01.csv',
'WP': 'ibtracs.WP.list.v04r01.csv'
}
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/'
LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl')
CACHE_EXPIRY_DAYS = 1
# -----------------------------
# ENHANCED: Color Maps and Standards with TD Support
# -----------------------------
# Enhanced color mapping with TD support (for Plotly)
enhanced_color_map = {
'Unknown': 'rgb(200, 200, 200)',
'Tropical Depression': 'rgb(128, 128, 128)', # Gray for TD
'Tropical Storm': 'rgb(0, 0, 255)',
'C1 Typhoon': 'rgb(0, 255, 255)',
'C2 Typhoon': 'rgb(0, 255, 0)',
'C3 Strong Typhoon': 'rgb(255, 255, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
'C5 Super Typhoon': 'rgb(255, 0, 0)'
}
# Matplotlib-compatible color mapping (hex colors)
matplotlib_color_map = {
'Unknown': '#C8C8C8',
'Tropical Depression': '#808080', # Gray for TD
'Tropical Storm': '#0000FF', # Blue
'C1 Typhoon': '#00FFFF', # Cyan
'C2 Typhoon': '#00FF00', # Green
'C3 Strong Typhoon': '#FFFF00', # Yellow
'C4 Very Strong Typhoon': '#FFA500', # Orange
'C5 Super Typhoon': '#FF0000' # Red
}
# Taiwan color mapping
taiwan_color_map = {
'Tropical Depression': '#808080', # Gray
'Mild Typhoon': '#FFFF00', # Yellow
'Medium Typhoon': '#FFA500', # Orange
'Strong Typhoon': '#FF0000' # Red
}
def rgb_string_to_hex(rgb_string):
"""Convert 'rgb(r,g,b)' string to hex color for matplotlib"""
try:
# Extract numbers from 'rgb(r,g,b)' format
import re
numbers = re.findall(r'\d+', rgb_string)
if len(numbers) == 3:
r, g, b = map(int, numbers)
return f'#{r:02x}{g:02x}{b:02x}'
else:
return '#808080' # Default gray
except:
return '#808080' # Default gray
def get_matplotlib_color(category):
"""Get matplotlib-compatible color for a storm category"""
return matplotlib_color_map.get(category, '#808080')
def get_taiwan_color(category):
"""Get Taiwan standard color for a storm category"""
return taiwan_color_map.get(category, '#808080')
# Cluster colors for route visualization
CLUSTER_COLORS = [
'#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7',
'#DDA0DD', '#98D8C8', '#F7DC6F', '#BB8FCE', '#85C1E9',
'#F8C471', '#82E0AA', '#F1948A', '#85C1E9', '#D2B4DE'
]
# Route prediction colors
ROUTE_COLORS = [
'#FF0066', '#00FF66', '#6600FF', '#FF6600', '#0066FF',
'#FF00CC', '#00FFCC', '#CC00FF', '#CCFF00', '#00CCFF'
]
# Original color map for backward compatibility
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
'C3 Strong Typhoon': 'rgb(255, 255, 0)',
'C2 Typhoon': 'rgb(0, 255, 0)',
'C1 Typhoon': 'rgb(0, 255, 255)',
'Tropical Storm': 'rgb(0, 0, 255)',
'Tropical Depression': 'rgb(128, 128, 128)'
}
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'},
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'},
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
# -----------------------------
# Utility Functions for HF Spaces
# -----------------------------
def safe_file_write(file_path, data_frame, backup_dir=None):
"""Safely write DataFrame to CSV with backup and error handling"""
try:
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Try to write to a temporary file first
temp_path = file_path + '.tmp'
data_frame.to_csv(temp_path, index=False)
# If successful, rename to final file
os.rename(temp_path, file_path)
logging.info(f"Successfully saved {len(data_frame)} records to {file_path}")
return True
except PermissionError as e:
logging.warning(f"Permission denied writing to {file_path}: {e}")
if backup_dir:
try:
backup_path = os.path.join(backup_dir, os.path.basename(file_path))
data_frame.to_csv(backup_path, index=False)
logging.info(f"Saved to backup location: {backup_path}")
return True
except Exception as backup_e:
logging.error(f"Failed to save to backup location: {backup_e}")
return False
except Exception as e:
logging.error(f"Error saving file {file_path}: {e}")
# Clean up temp file if it exists
temp_path = file_path + '.tmp'
if os.path.exists(temp_path):
try:
os.remove(temp_path)
except:
pass
return False
def get_fallback_data_dir():
"""Get a fallback data directory that's guaranteed to be writable"""
fallback_dirs = [
tempfile.gettempdir(),
'/tmp',
os.path.expanduser('~'),
os.getcwd()
]
for directory in fallback_dirs:
try:
test_dir = os.path.join(directory, 'typhoon_fallback')
os.makedirs(test_dir, exist_ok=True)
test_file = os.path.join(test_dir, 'test.txt')
with open(test_file, 'w') as f:
f.write('test')
os.remove(test_file)
return test_dir
except:
continue
# If all else fails, use current directory
return os.getcwd()
# -----------------------------
# ONI and Typhoon Data Functions
# -----------------------------
def download_oni_file(url, filename):
"""Download ONI file with retry logic"""
max_retries = 3
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
with open(filename, 'wb') as f:
f.write(response.content)
return True
except Exception as e:
logging.warning(f"Attempt {attempt + 1} failed to download ONI: {e}")
if attempt < max_retries - 1:
time.sleep(2 ** attempt) # Exponential backoff
else:
logging.error(f"Failed to download ONI after {max_retries} attempts")
return False
def convert_oni_ascii_to_csv(input_file, output_file):
"""Convert ONI ASCII format to CSV"""
data = defaultdict(lambda: [''] * 12)
season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5,
'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11}
try:
with open(input_file, 'r') as f:
lines = f.readlines()[1:] # Skip header
for line in lines:
parts = line.split()
if len(parts) >= 4:
season, year, anom = parts[0], parts[1], parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year)-1)
data[year][month-1] = anom
# Write to CSV with safe write
df = pd.DataFrame(data).T.reset_index()
df.columns = ['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
df = df.sort_values('Year').reset_index(drop=True)
return safe_file_write(output_file, df, get_fallback_data_dir())
except Exception as e:
logging.error(f"Error converting ONI file: {e}")
return False
def update_oni_data():
"""Update ONI data with error handling"""
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
try:
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not os.path.exists(output_file):
os.rename(temp_file, input_file)
convert_oni_ascii_to_csv(input_file, output_file)
else:
os.remove(temp_file)
else:
# Create fallback ONI data if download fails
logging.warning("Creating fallback ONI data")
create_fallback_oni_data(output_file)
except Exception as e:
logging.error(f"Error updating ONI data: {e}")
create_fallback_oni_data(output_file)
def create_fallback_oni_data(output_file):
"""Create minimal ONI data for testing"""
years = range(2000, 2026) # Extended to include 2025
months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
# Create synthetic ONI data
data = []
for year in years:
row = [year]
for month in months:
# Generate some realistic ONI values
value = np.random.normal(0, 1) * 0.5
row.append(f"{value:.2f}")
data.append(row)
df = pd.DataFrame(data, columns=['Year'] + months)
safe_file_write(output_file, df, get_fallback_data_dir())
# -----------------------------
# FIXED: IBTrACS Data Loading
# -----------------------------
def download_ibtracs_file(basin, force_download=False):
"""Download specific basin file from IBTrACS"""
filename = BASIN_FILES[basin]
local_path = os.path.join(DATA_PATH, filename)
url = IBTRACS_BASE_URL + filename
# Check if file exists and is recent (less than 7 days old)
if os.path.exists(local_path) and not force_download:
file_age = time.time() - os.path.getmtime(local_path)
if file_age < 7 * 24 * 3600: # 7 days
logging.info(f"Using cached {basin} basin file")
return local_path
try:
logging.info(f"Downloading {basin} basin file from {url}")
response = requests.get(url, timeout=60)
response.raise_for_status()
# Ensure directory exists
os.makedirs(os.path.dirname(local_path), exist_ok=True)
with open(local_path, 'wb') as f:
f.write(response.content)
logging.info(f"Successfully downloaded {basin} basin file")
return local_path
except Exception as e:
logging.error(f"Failed to download {basin} basin file: {e}")
return None
def examine_ibtracs_structure(file_path):
"""Examine the actual structure of an IBTrACS CSV file"""
try:
with open(file_path, 'r') as f:
lines = f.readlines()
# Show first 5 lines
logging.info("First 5 lines of IBTrACS file:")
for i, line in enumerate(lines[:5]):
logging.info(f"Line {i}: {line.strip()}")
# The first line contains the actual column headers
# No need to skip rows for IBTrACS v04r01
df = pd.read_csv(file_path, nrows=5)
logging.info(f"Columns from first row: {list(df.columns)}")
return list(df.columns)
except Exception as e:
logging.error(f"Error examining IBTrACS structure: {e}")
return None
def load_ibtracs_csv_directly(basin='WP'):
"""Load IBTrACS data directly from CSV - FIXED VERSION"""
filename = BASIN_FILES[basin]
local_path = os.path.join(DATA_PATH, filename)
# Download if not exists
if not os.path.exists(local_path):
downloaded_path = download_ibtracs_file(basin)
if not downloaded_path:
return None
try:
# First, examine the structure
actual_columns = examine_ibtracs_structure(local_path)
if not actual_columns:
logging.error("Could not examine IBTrACS file structure")
return None
# Read IBTrACS CSV - DON'T skip any rows for v04r01
# The first row contains proper column headers
logging.info(f"Reading IBTrACS CSV file: {local_path}")
df = pd.read_csv(local_path, low_memory=False) # Don't skip any rows
logging.info(f"Original columns: {list(df.columns)}")
logging.info(f"Data shape before cleaning: {df.shape}")
# Check which essential columns exist
required_cols = ['SID', 'ISO_TIME', 'LAT', 'LON']
available_required = [col for col in required_cols if col in df.columns]
if len(available_required) < 2:
logging.error(f"Missing critical columns. Available: {list(df.columns)}")
return None
# Clean and standardize the data with format specification
if 'ISO_TIME' in df.columns:
df['ISO_TIME'] = pd.to_datetime(df['ISO_TIME'], format='%Y-%m-%d %H:%M:%S', errors='coerce')
# Clean numeric columns
numeric_columns = ['LAT', 'LON', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES']
for col in numeric_columns:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
# Filter out invalid/missing critical data
valid_rows = df['LAT'].notna() & df['LON'].notna()
df = df[valid_rows]
# Ensure LAT/LON are in reasonable ranges
df = df[(df['LAT'] >= -90) & (df['LAT'] <= 90)]
df = df[(df['LON'] >= -180) & (df['LON'] <= 180)]
# Add basin info if missing
if 'BASIN' not in df.columns:
df['BASIN'] = basin
# Add default columns if missing
if 'NAME' not in df.columns:
df['NAME'] = 'UNNAMED'
if 'SEASON' not in df.columns and 'ISO_TIME' in df.columns:
df['SEASON'] = df['ISO_TIME'].dt.year
logging.info(f"Successfully loaded {len(df)} records from {basin} basin")
return df
except Exception as e:
logging.error(f"Error reading IBTrACS CSV file: {e}")
return None
def load_ibtracs_data_fixed():
"""Fixed version of IBTrACS data loading"""
ibtracs_data = {}
# Try to load each basin, but prioritize WP for this application
load_order = ['WP', 'EP', 'NA']
for basin in load_order:
try:
logging.info(f"Loading {basin} basin data...")
df = load_ibtracs_csv_directly(basin)
if df is not None and not df.empty:
ibtracs_data[basin] = df
logging.info(f"Successfully loaded {basin} basin with {len(df)} records")
else:
logging.warning(f"No data loaded for basin {basin}")
ibtracs_data[basin] = None
except Exception as e:
logging.error(f"Failed to load basin {basin}: {e}")
ibtracs_data[basin] = None
return ibtracs_data
def load_data_fixed(oni_path, typhoon_path):
"""Fixed version of load_data function"""
# Load ONI data
oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [],
'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [],
'Oct': [], 'Nov': [], 'Dec': []})
if not os.path.exists(oni_path):
logging.warning(f"ONI data file not found: {oni_path}")
update_oni_data()
try:
oni_data = pd.read_csv(oni_path)
logging.info(f"Successfully loaded ONI data with {len(oni_data)} years")
except Exception as e:
logging.error(f"Error loading ONI data: {e}")
update_oni_data()
try:
oni_data = pd.read_csv(oni_path)
except Exception as e:
logging.error(f"Still can't load ONI data: {e}")
# Load typhoon data - NEW APPROACH
typhoon_data = None
# First, try to load from existing processed file
if os.path.exists(typhoon_path):
try:
typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
# Ensure basic columns exist and are valid
required_cols = ['LAT', 'LON']
if all(col in typhoon_data.columns for col in required_cols):
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
logging.info(f"Loaded processed typhoon data with {len(typhoon_data)} records")
else:
logging.warning("Processed typhoon data missing required columns, will reload from IBTrACS")
typhoon_data = None
except Exception as e:
logging.error(f"Error loading processed typhoon data: {e}")
typhoon_data = None
# If no valid processed data, load from IBTrACS
if typhoon_data is None or typhoon_data.empty:
logging.info("Loading typhoon data from IBTrACS...")
ibtracs_data = load_ibtracs_data_fixed()
# Combine all available basin data, prioritizing WP
combined_dfs = []
for basin in ['WP', 'EP', 'NA']:
if basin in ibtracs_data and ibtracs_data[basin] is not None:
df = ibtracs_data[basin].copy()
df['BASIN'] = basin
combined_dfs.append(df)
if combined_dfs:
typhoon_data = pd.concat(combined_dfs, ignore_index=True)
# Ensure SID has proper format
if 'SID' not in typhoon_data.columns and 'BASIN' in typhoon_data.columns:
# Create SID from basin and other identifiers if missing
if 'SEASON' in typhoon_data.columns:
typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) +
typhoon_data.index.astype(str).str.zfill(2) +
typhoon_data['SEASON'].astype(str))
else:
typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) +
typhoon_data.index.astype(str).str.zfill(2) +
'2000')
# Save the processed data for future use
safe_file_write(typhoon_path, typhoon_data, get_fallback_data_dir())
logging.info(f"Combined IBTrACS data: {len(typhoon_data)} total records")
else:
logging.error("Failed to load any IBTrACS basin data")
# Create minimal fallback data
typhoon_data = create_fallback_typhoon_data()
# Final validation of typhoon data
if typhoon_data is not None:
# Ensure required columns exist with fallback values
required_columns = {
'SID': 'UNKNOWN',
'ISO_TIME': pd.Timestamp('2000-01-01'),
'LAT': 0.0,
'LON': 0.0,
'USA_WIND': np.nan,
'USA_PRES': np.nan,
'NAME': 'UNNAMED',
'SEASON': 2000
}
for col, default_val in required_columns.items():
if col not in typhoon_data.columns:
typhoon_data[col] = default_val
logging.warning(f"Added missing column {col} with default value")
# Ensure data types
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['LAT'] = pd.to_numeric(typhoon_data['LAT'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
# Remove rows with invalid coordinates
typhoon_data = typhoon_data.dropna(subset=['LAT', 'LON'])
logging.info(f"Final typhoon data: {len(typhoon_data)} records after validation")
return oni_data, typhoon_data
def create_fallback_typhoon_data():
"""Create minimal fallback typhoon data - FIXED VERSION"""
# Use proper pandas date_range instead of numpy
dates = pd.date_range(start='2000-01-01', end='2025-12-31', freq='D') # Extended to 2025
storm_dates = dates[np.random.choice(len(dates), size=100, replace=False)]
data = []
for i, date in enumerate(storm_dates):
# Create realistic WP storm tracks
base_lat = np.random.uniform(10, 30)
base_lon = np.random.uniform(130, 160)
# Generate 20-50 data points per storm
track_length = np.random.randint(20, 51)
sid = f"WP{i+1:02d}{date.year}"
for j in range(track_length):
lat = base_lat + j * 0.2 + np.random.normal(0, 0.1)
lon = base_lon + j * 0.3 + np.random.normal(0, 0.1)
wind = max(25, 70 + np.random.normal(0, 20))
pres = max(950, 1000 - wind + np.random.normal(0, 5))
data.append({
'SID': sid,
'ISO_TIME': date + pd.Timedelta(hours=j*6), # Use pd.Timedelta instead
'NAME': f'FALLBACK_{i+1}',
'SEASON': date.year,
'LAT': lat,
'LON': lon,
'USA_WIND': wind,
'USA_PRES': pres,
'BASIN': 'WP'
})
df = pd.DataFrame(data)
logging.info(f"Created fallback typhoon data with {len(df)} records")
return df
def process_oni_data(oni_data):
"""Process ONI data into long format"""
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06',
'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'}
oni_long['Month'] = oni_long['Month'].map(month_map)
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_typhoon_data(typhoon_data):
"""Process typhoon data"""
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}")
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first',
'LAT':'first','LON':'first'
}).reset_index()
if 'ISO_TIME' in typhoon_max.columns:
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
else:
# Fallback if no ISO_TIME
typhoon_max['Month'] = '01'
typhoon_max['Year'] = typhoon_max['SEASON']
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon_enhanced)
return typhoon_max
def merge_data(oni_long, typhoon_max):
"""Merge ONI and typhoon data"""
return pd.merge(typhoon_max, oni_long, on=['Year','Month'])
# -----------------------------
# ENHANCED: Categorization Functions
# -----------------------------
def categorize_typhoon_enhanced(wind_speed):
"""Enhanced categorization that properly includes Tropical Depressions"""
if pd.isna(wind_speed):
return 'Unknown'
# Convert to knots if in m/s (some datasets use m/s)
if wind_speed < 10: # Likely in m/s, convert to knots
wind_speed = wind_speed * 1.94384
# FIXED thresholds to include TD
if wind_speed < 34: # Below 34 knots = Tropical Depression
return 'Tropical Depression'
elif wind_speed < 64: # 34-63 knots = Tropical Storm
return 'Tropical Storm'
elif wind_speed < 83: # 64-82 knots = Category 1 Typhoon
return 'C1 Typhoon'
elif wind_speed < 96: # 83-95 knots = Category 2 Typhoon
return 'C2 Typhoon'
elif wind_speed < 113: # 96-112 knots = Category 3 Strong Typhoon
return 'C3 Strong Typhoon'
elif wind_speed < 137: # 113-136 knots = Category 4 Very Strong Typhoon
return 'C4 Very Strong Typhoon'
else: # 137+ knots = Category 5 Super Typhoon
return 'C5 Super Typhoon'
def categorize_typhoon_taiwan(wind_speed):
"""Taiwan categorization system"""
if pd.isna(wind_speed):
return 'Tropical Depression'
# Convert to m/s if in knots
wind_speed = wind_speed * 0.514444
if wind_speed >= 51.0:
return 'Strong Typhoon'
elif wind_speed >= 33.7:
return 'Medium Typhoon'
elif wind_speed >= 17.2:
return 'Mild Typhoon'
else:
return 'Tropical Depression'
# Original function for backward compatibility
def categorize_typhoon(wind_speed):
"""Original categorize typhoon function for backward compatibility"""
return categorize_typhoon_enhanced(wind_speed)
def classify_enso_phases(oni_value):
"""Classify ENSO phases based on ONI value"""
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if pd.isna(oni_value):
return 'Neutral'
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
# -----------------------------
# FIXED: ADVANCED ML FEATURES WITH ROBUST ERROR HANDLING
# -----------------------------
def extract_storm_features(typhoon_data):
"""Extract comprehensive features for clustering analysis - FIXED VERSION"""
try:
if typhoon_data is None or typhoon_data.empty:
logging.error("No typhoon data provided for feature extraction")
return None
# Basic features - ensure columns exist
basic_features = []
for sid in typhoon_data['SID'].unique():
storm_data = typhoon_data[typhoon_data['SID'] == sid].copy()
if len(storm_data) == 0:
continue
# Initialize feature dict with safe defaults
features = {'SID': sid}
# Wind statistics
if 'USA_WIND' in storm_data.columns:
wind_values = pd.to_numeric(storm_data['USA_WIND'], errors='coerce').dropna()
if len(wind_values) > 0:
features['USA_WIND_max'] = wind_values.max()
features['USA_WIND_mean'] = wind_values.mean()
features['USA_WIND_std'] = wind_values.std() if len(wind_values) > 1 else 0
else:
features['USA_WIND_max'] = 30
features['USA_WIND_mean'] = 30
features['USA_WIND_std'] = 0
else:
features['USA_WIND_max'] = 30
features['USA_WIND_mean'] = 30
features['USA_WIND_std'] = 0
# Pressure statistics
if 'USA_PRES' in storm_data.columns:
pres_values = pd.to_numeric(storm_data['USA_PRES'], errors='coerce').dropna()
if len(pres_values) > 0:
features['USA_PRES_min'] = pres_values.min()
features['USA_PRES_mean'] = pres_values.mean()
features['USA_PRES_std'] = pres_values.std() if len(pres_values) > 1 else 0
else:
features['USA_PRES_min'] = 1000
features['USA_PRES_mean'] = 1000
features['USA_PRES_std'] = 0
else:
features['USA_PRES_min'] = 1000
features['USA_PRES_mean'] = 1000
features['USA_PRES_std'] = 0
# Location statistics
if 'LAT' in storm_data.columns and 'LON' in storm_data.columns:
lat_values = pd.to_numeric(storm_data['LAT'], errors='coerce').dropna()
lon_values = pd.to_numeric(storm_data['LON'], errors='coerce').dropna()
if len(lat_values) > 0 and len(lon_values) > 0:
features['LAT_mean'] = lat_values.mean()
features['LAT_std'] = lat_values.std() if len(lat_values) > 1 else 0
features['LAT_max'] = lat_values.max()
features['LAT_min'] = lat_values.min()
features['LON_mean'] = lon_values.mean()
features['LON_std'] = lon_values.std() if len(lon_values) > 1 else 0
features['LON_max'] = lon_values.max()
features['LON_min'] = lon_values.min()
# Genesis location (first valid position)
features['genesis_lat'] = lat_values.iloc[0]
features['genesis_lon'] = lon_values.iloc[0]
features['genesis_intensity'] = features['USA_WIND_mean'] # Use mean as fallback
# Track characteristics
features['lat_range'] = lat_values.max() - lat_values.min()
features['lon_range'] = lon_values.max() - lon_values.min()
# Calculate track distance
if len(lat_values) > 1:
distances = []
for i in range(1, len(lat_values)):
dlat = lat_values.iloc[i] - lat_values.iloc[i-1]
dlon = lon_values.iloc[i] - lon_values.iloc[i-1]
distances.append(np.sqrt(dlat**2 + dlon**2))
features['total_distance'] = sum(distances)
features['avg_speed'] = np.mean(distances) if distances else 0
else:
features['total_distance'] = 0
features['avg_speed'] = 0
# Track curvature
if len(lat_values) > 2:
bearing_changes = []
for i in range(1, len(lat_values)-1):
dlat1 = lat_values.iloc[i] - lat_values.iloc[i-1]
dlon1 = lon_values.iloc[i] - lon_values.iloc[i-1]
dlat2 = lat_values.iloc[i+1] - lat_values.iloc[i]
dlon2 = lon_values.iloc[i+1] - lon_values.iloc[i]
angle1 = np.arctan2(dlat1, dlon1)
angle2 = np.arctan2(dlat2, dlon2)
change = abs(angle2 - angle1)
bearing_changes.append(change)
features['avg_curvature'] = np.mean(bearing_changes) if bearing_changes else 0
else:
features['avg_curvature'] = 0
else:
# Default location values
features.update({
'LAT_mean': 20, 'LAT_std': 0, 'LAT_max': 20, 'LAT_min': 20,
'LON_mean': 140, 'LON_std': 0, 'LON_max': 140, 'LON_min': 140,
'genesis_lat': 20, 'genesis_lon': 140, 'genesis_intensity': 30,
'lat_range': 0, 'lon_range': 0, 'total_distance': 0,
'avg_speed': 0, 'avg_curvature': 0
})
else:
# Default location values if columns missing
features.update({
'LAT_mean': 20, 'LAT_std': 0, 'LAT_max': 20, 'LAT_min': 20,
'LON_mean': 140, 'LON_std': 0, 'LON_max': 140, 'LON_min': 140,
'genesis_lat': 20, 'genesis_lon': 140, 'genesis_intensity': 30,
'lat_range': 0, 'lon_range': 0, 'total_distance': 0,
'avg_speed': 0, 'avg_curvature': 0
})
# Track length
features['track_length'] = len(storm_data)
# Add seasonal information
if 'SEASON' in storm_data.columns:
features['season'] = storm_data['SEASON'].iloc[0]
else:
features['season'] = 2000
# Add basin information
if 'BASIN' in storm_data.columns:
features['basin'] = storm_data['BASIN'].iloc[0]
elif 'SID' in storm_data.columns:
features['basin'] = sid[:2] if len(sid) >= 2 else 'WP'
else:
features['basin'] = 'WP'
basic_features.append(features)
if not basic_features:
logging.error("No valid storm features could be extracted")
return None
# Convert to DataFrame
storm_features = pd.DataFrame(basic_features)
# Ensure all numeric columns are properly typed
numeric_columns = [col for col in storm_features.columns if col not in ['SID', 'basin']]
for col in numeric_columns:
storm_features[col] = pd.to_numeric(storm_features[col], errors='coerce').fillna(0)
logging.info(f"Successfully extracted features for {len(storm_features)} storms")
logging.info(f"Feature columns: {list(storm_features.columns)}")
return storm_features
except Exception as e:
logging.error(f"Error in extract_storm_features: {e}")
import traceback
traceback.print_exc()
return None
def perform_dimensionality_reduction(storm_features, method='umap', n_components=2):
"""Perform UMAP or t-SNE dimensionality reduction - FIXED VERSION"""
try:
if storm_features is None or storm_features.empty:
raise ValueError("No storm features provided")
# Select numeric features for clustering - FIXED
feature_cols = []
for col in storm_features.columns:
if col not in ['SID', 'basin'] and storm_features[col].dtype in ['float64', 'int64']:
# Check if column has valid data
valid_data = storm_features[col].dropna()
if len(valid_data) > 0 and valid_data.std() > 0: # Only include columns with variance
feature_cols.append(col)
if len(feature_cols) == 0:
raise ValueError("No valid numeric features found for clustering")
logging.info(f"Using {len(feature_cols)} features for clustering: {feature_cols}")
X = storm_features[feature_cols].fillna(0)
# Check if we have enough samples
if len(X) < 2:
raise ValueError("Need at least 2 storms for clustering")
# Standardize features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Perform dimensionality reduction
if method.lower() == 'umap' and UMAP_AVAILABLE and len(X_scaled) >= 4:
# UMAP parameters optimized for typhoon data - fixed warnings
n_neighbors = min(15, len(X_scaled) - 1)
reducer = umap.UMAP(
n_components=n_components,
n_neighbors=n_neighbors,
min_dist=0.1,
metric='euclidean',
random_state=42,
n_jobs=1 # Explicitly set to avoid warning
)
elif method.lower() == 'tsne' and len(X_scaled) >= 4:
# t-SNE parameters
perplexity = min(30, len(X_scaled) // 4)
perplexity = max(1, perplexity) # Ensure perplexity is at least 1
reducer = TSNE(
n_components=n_components,
perplexity=perplexity,
learning_rate=200,
n_iter=1000,
random_state=42
)
else:
# Fallback to PCA
reducer = PCA(n_components=n_components, random_state=42)
# Fit and transform
embedding = reducer.fit_transform(X_scaled)
logging.info(f"Dimensionality reduction successful: {X_scaled.shape} -> {embedding.shape}")
return embedding, feature_cols, scaler
except Exception as e:
logging.error(f"Error in perform_dimensionality_reduction: {e}")
raise
def cluster_storms_data(embedding, method='dbscan', eps=0.5, min_samples=3):
"""Cluster storms based on their embedding - FIXED NAME VERSION"""
try:
if len(embedding) < 2:
return np.array([0] * len(embedding)) # Single cluster for insufficient data
if method.lower() == 'dbscan':
# Adjust min_samples based on data size
min_samples = min(min_samples, max(2, len(embedding) // 5))
clusterer = DBSCAN(eps=eps, min_samples=min_samples)
elif method.lower() == 'kmeans':
# Adjust n_clusters based on data size
n_clusters = min(5, max(2, len(embedding) // 3))
clusterer = KMeans(n_clusters=n_clusters, random_state=42)
else:
raise ValueError("Method must be 'dbscan' or 'kmeans'")
clusters = clusterer.fit_predict(embedding)
logging.info(f"Clustering complete: {len(np.unique(clusters))} clusters found")
return clusters
except Exception as e:
logging.error(f"Error in cluster_storms_data: {e}")
# Return single cluster as fallback
return np.array([0] * len(embedding))
def create_separate_clustering_plots(storm_features, typhoon_data, method='umap'):
"""Create separate plots for clustering analysis - ENHANCED CLARITY VERSION"""
try:
# Validate inputs
if storm_features is None or storm_features.empty:
raise ValueError("No storm features available for clustering")
if typhoon_data is None or typhoon_data.empty:
raise ValueError("No typhoon data available for route visualization")
logging.info(f"Starting clustering visualization with {len(storm_features)} storms")
# Perform dimensionality reduction
embedding, feature_cols, scaler = perform_dimensionality_reduction(storm_features, method)
# Perform clustering
cluster_labels = cluster_storms_data(embedding, 'dbscan')
# Add clustering results to storm features
storm_features_viz = storm_features.copy()
storm_features_viz['cluster'] = cluster_labels
storm_features_viz['dim1'] = embedding[:, 0]
storm_features_viz['dim2'] = embedding[:, 1]
# Merge with typhoon data for additional info - SAFE MERGE
try:
storm_info = typhoon_data.groupby('SID').first()[['NAME', 'SEASON']].reset_index()
storm_features_viz = storm_features_viz.merge(storm_info, on='SID', how='left')
# Fill missing values
storm_features_viz['NAME'] = storm_features_viz['NAME'].fillna('UNNAMED')
storm_features_viz['SEASON'] = storm_features_viz['SEASON'].fillna(2000)
except Exception as merge_error:
logging.warning(f"Could not merge storm info: {merge_error}")
storm_features_viz['NAME'] = 'UNNAMED'
storm_features_viz['SEASON'] = 2000
# Get unique clusters and assign distinct colors
unique_clusters = sorted([c for c in storm_features_viz['cluster'].unique() if c != -1])
noise_count = len(storm_features_viz[storm_features_viz['cluster'] == -1])
# 1. Enhanced clustering scatter plot with clear cluster identification
fig_cluster = go.Figure()
# Add noise points first
if noise_count > 0:
noise_data = storm_features_viz[storm_features_viz['cluster'] == -1]
fig_cluster.add_trace(
go.Scatter(
x=noise_data['dim1'],
y=noise_data['dim2'],
mode='markers',
marker=dict(color='lightgray', size=8, opacity=0.5, symbol='x'),
name=f'Noise ({noise_count} storms)',
hovertemplate=(
'<b>%{customdata[0]}</b><br>'
'Season: %{customdata[1]}<br>'
'Cluster: Noise<br>'
f'{method.upper()} Dim 1: %{{x:.2f}}<br>'
f'{method.upper()} Dim 2: %{{y:.2f}}<br>'
'<extra></extra>'
),
customdata=np.column_stack((
noise_data['NAME'].fillna('UNNAMED'),
noise_data['SEASON'].fillna(2000)
))
)
)
# Add clusters with distinct colors and shapes
cluster_symbols = ['circle', 'square', 'diamond', 'triangle-up', 'triangle-down',
'pentagon', 'hexagon', 'star', 'cross', 'circle-open']
for i, cluster in enumerate(unique_clusters):
cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
symbol = cluster_symbols[i % len(cluster_symbols)]
fig_cluster.add_trace(
go.Scatter(
x=cluster_data['dim1'],
y=cluster_data['dim2'],
mode='markers',
marker=dict(color=color, size=10, symbol=symbol, line=dict(width=1, color='white')),
name=f'Cluster {cluster} ({len(cluster_data)} storms)',
hovertemplate=(
'<b>%{customdata[0]}</b><br>'
'Season: %{customdata[1]}<br>'
f'Cluster: {cluster}<br>'
f'{method.upper()} Dim 1: %{{x:.2f}}<br>'
f'{method.upper()} Dim 2: %{{y:.2f}}<br>'
'Intensity: %{customdata[2]:.0f} kt<br>'
'<extra></extra>'
),
customdata=np.column_stack((
cluster_data['NAME'].fillna('UNNAMED'),
cluster_data['SEASON'].fillna(2000),
cluster_data['USA_WIND_max'].fillna(0)
))
)
)
fig_cluster.update_layout(
title=f'Storm Clustering Analysis using {method.upper()}<br><sub>Each symbol/color represents a distinct storm pattern group</sub>',
xaxis_title=f'{method.upper()} Dimension 1',
yaxis_title=f'{method.upper()} Dimension 2',
height=600,
showlegend=True
)
# 2. ENHANCED route map with cluster legends and clearer representation
fig_routes = go.Figure()
# Create a comprehensive legend showing cluster characteristics
cluster_info_text = []
for i, cluster in enumerate(unique_clusters):
cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist()
color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
# Get cluster statistics for legend
cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
avg_intensity = cluster_data['USA_WIND_max'].mean() if 'USA_WIND_max' in cluster_data.columns else 0
avg_pressure = cluster_data['USA_PRES_min'].mean() if 'USA_PRES_min' in cluster_data.columns else 1000
cluster_info_text.append(
f"Cluster {cluster}: {len(cluster_storm_ids)} storms, "
f"Avg: {avg_intensity:.0f}kt/{avg_pressure:.0f}hPa"
)
# Add multiple storms per cluster with clear identification
storms_added = 0
for j, sid in enumerate(cluster_storm_ids[:8]): # Show up to 8 storms per cluster
try:
storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
if len(storm_track) > 1:
# Ensure valid coordinates
valid_coords = storm_track['LAT'].notna() & storm_track['LON'].notna()
storm_track = storm_track[valid_coords]
if len(storm_track) > 1:
storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED'
storm_season = storm_track['SEASON'].iloc[0] if 'SEASON' in storm_track.columns else 'Unknown'
# Vary line style for different storms in same cluster
line_styles = ['solid', 'dash', 'dot', 'dashdot']
line_style = line_styles[j % len(line_styles)]
line_width = 3 if j == 0 else 2 # First storm thicker
fig_routes.add_trace(
go.Scattergeo(
lon=storm_track['LON'],
lat=storm_track['LAT'],
mode='lines+markers',
line=dict(color=color, width=line_width, dash=line_style),
marker=dict(color=color, size=3),
name=f'C{cluster}: {storm_name} ({storm_season})',
showlegend=True,
legendgroup=f'cluster_{cluster}',
hovertemplate=(
f'<b>Cluster {cluster}: {storm_name}</b><br>'
'Lat: %{lat:.1f}Β°<br>'
'Lon: %{lon:.1f}Β°<br>'
f'Season: {storm_season}<br>'
f'Pattern Group: {cluster}<br>'
'<extra></extra>'
)
)
)
storms_added += 1
except Exception as track_error:
logging.warning(f"Error adding track for storm {sid}: {track_error}")
continue
# Add cluster centroid marker
if len(cluster_storm_ids) > 0:
# Calculate average genesis location for cluster
cluster_storm_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
if 'genesis_lat' in cluster_storm_data.columns and 'genesis_lon' in cluster_storm_data.columns:
avg_lat = cluster_storm_data['genesis_lat'].mean()
avg_lon = cluster_storm_data['genesis_lon'].mean()
fig_routes.add_trace(
go.Scattergeo(
lon=[avg_lon],
lat=[avg_lat],
mode='markers',
marker=dict(
color=color,
size=20,
symbol='star',
line=dict(width=2, color='white')
),
name=f'C{cluster} Center',
showlegend=True,
legendgroup=f'cluster_{cluster}',
hovertemplate=(
f'<b>Cluster {cluster} Genesis Center</b><br>'
f'Avg Position: {avg_lat:.1f}Β°N, {avg_lon:.1f}Β°E<br>'
f'Storms: {len(cluster_storm_ids)}<br>'
f'Avg Intensity: {avg_intensity:.0f} kt<br>'
'<extra></extra>'
)
)
)
# Update route map layout with enhanced information and LARGER SIZE
fig_routes.update_layout(
title=f"Storm Routes by {method.upper()} Clusters<br><sub>Different line styles = different storms in same cluster | Stars = cluster centers</sub>",
geo=dict(
projection_type="natural earth",
showland=True,
landcolor="LightGray",
showocean=True,
oceancolor="LightBlue",
showcoastlines=True,
coastlinecolor="Gray",
center=dict(lat=20, lon=140),
projection_scale=2.5 # Larger map
),
height=800, # Much larger height
width=1200, # Wider map
showlegend=True
)
# Add cluster info annotation
cluster_summary = "<br>".join(cluster_info_text)
fig_routes.add_annotation(
text=f"<b>Cluster Summary:</b><br>{cluster_summary}",
xref="paper", yref="paper",
x=0.02, y=0.98,
showarrow=False,
align="left",
bgcolor="rgba(255,255,255,0.8)",
bordercolor="gray",
borderwidth=1
)
# 3. Enhanced pressure evolution plot with cluster identification
fig_pressure = go.Figure()
for i, cluster in enumerate(unique_clusters):
cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist()
color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
cluster_pressures = []
for j, sid in enumerate(cluster_storm_ids[:5]): # Limit to 5 storms per cluster
try:
storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
if len(storm_track) > 1 and 'USA_PRES' in storm_track.columns:
pressure_values = pd.to_numeric(storm_track['USA_PRES'], errors='coerce').dropna()
if len(pressure_values) > 0:
storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED'
time_hours = range(len(pressure_values))
# Normalize time to show relative progression
normalized_time = np.linspace(0, 100, len(pressure_values))
fig_pressure.add_trace(
go.Scatter(
x=normalized_time,
y=pressure_values,
mode='lines',
line=dict(color=color, width=2, dash='solid' if j == 0 else 'dash'),
name=f'C{cluster}: {storm_name}' if j == 0 else None,
showlegend=(j == 0),
legendgroup=f'pressure_cluster_{cluster}',
hovertemplate=(
f'<b>Cluster {cluster}: {storm_name}</b><br>'
'Progress: %{x:.0f}%<br>'
'Pressure: %{y:.0f} hPa<br>'
'<extra></extra>'
),
opacity=0.8 if j == 0 else 0.5
)
)
cluster_pressures.extend(pressure_values)
except Exception as e:
continue
# Add cluster average line
if cluster_pressures:
avg_pressure = np.mean(cluster_pressures)
fig_pressure.add_hline(
y=avg_pressure,
line_dash="dot",
line_color=color,
annotation_text=f"C{cluster} Avg: {avg_pressure:.0f}",
annotation_position="right"
)
fig_pressure.update_layout(
title=f"Pressure Evolution by {method.upper()} Clusters<br><sub>Normalized timeline (0-100%) | Dotted lines = cluster averages</sub>",
xaxis_title="Storm Progress (%)",
yaxis_title="Pressure (hPa)",
height=500
)
# 4. Enhanced wind evolution plot
fig_wind = go.Figure()
for i, cluster in enumerate(unique_clusters):
cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist()
color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
cluster_winds = []
for j, sid in enumerate(cluster_storm_ids[:5]): # Limit to 5 storms per cluster
try:
storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
if len(storm_track) > 1 and 'USA_WIND' in storm_track.columns:
wind_values = pd.to_numeric(storm_track['USA_WIND'], errors='coerce').dropna()
if len(wind_values) > 0:
storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED'
# Normalize time to show relative progression
normalized_time = np.linspace(0, 100, len(wind_values))
fig_wind.add_trace(
go.Scatter(
x=normalized_time,
y=wind_values,
mode='lines',
line=dict(color=color, width=2, dash='solid' if j == 0 else 'dash'),
name=f'C{cluster}: {storm_name}' if j == 0 else None,
showlegend=(j == 0),
legendgroup=f'wind_cluster_{cluster}',
hovertemplate=(
f'<b>Cluster {cluster}: {storm_name}</b><br>'
'Progress: %{x:.0f}%<br>'
'Wind: %{y:.0f} kt<br>'
'<extra></extra>'
),
opacity=0.8 if j == 0 else 0.5
)
)
cluster_winds.extend(wind_values)
except Exception as e:
continue
# Add cluster average line
if cluster_winds:
avg_wind = np.mean(cluster_winds)
fig_wind.add_hline(
y=avg_wind,
line_dash="dot",
line_color=color,
annotation_text=f"C{cluster} Avg: {avg_wind:.0f}",
annotation_position="right"
)
fig_wind.update_layout(
title=f"Wind Speed Evolution by {method.upper()} Clusters<br><sub>Normalized timeline (0-100%) | Dotted lines = cluster averages</sub>",
xaxis_title="Storm Progress (%)",
yaxis_title="Wind Speed (kt)",
height=500
)
# Generate enhanced cluster statistics with clear explanations
try:
stats_text = f"ENHANCED {method.upper()} CLUSTER ANALYSIS RESULTS\n" + "="*60 + "\n\n"
stats_text += f"π DIMENSIONALITY REDUCTION: {method.upper()}\n"
stats_text += f"π― CLUSTERING ALGORITHM: DBSCAN (automatic pattern discovery)\n"
stats_text += f"π TOTAL STORMS ANALYZED: {len(storm_features_viz)}\n"
stats_text += f"π¨ CLUSTERS DISCOVERED: {len(unique_clusters)}\n"
if noise_count > 0:
stats_text += f"β NOISE POINTS: {noise_count} storms (don't fit clear patterns)\n"
stats_text += "\n"
for cluster in sorted(storm_features_viz['cluster'].unique()):
cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
storm_count = len(cluster_data)
if cluster == -1:
stats_text += f"β NOISE GROUP: {storm_count} storms\n"
stats_text += " β These storms don't follow the main patterns\n"
stats_text += " β May represent unique or rare storm behaviors\n\n"
continue
stats_text += f"π― CLUSTER {cluster}: {storm_count} storms\n"
stats_text += f" π¨ Color: {CLUSTER_COLORS[cluster % len(CLUSTER_COLORS)]}\n"
# Add detailed statistics if available
if 'USA_WIND_max' in cluster_data.columns:
wind_mean = cluster_data['USA_WIND_max'].mean()
wind_std = cluster_data['USA_WIND_max'].std()
stats_text += f" π¨ Intensity: {wind_mean:.1f} Β± {wind_std:.1f} kt\n"
if 'USA_PRES_min' in cluster_data.columns:
pres_mean = cluster_data['USA_PRES_min'].mean()
pres_std = cluster_data['USA_PRES_min'].std()
stats_text += f" π‘οΈ Pressure: {pres_mean:.1f} Β± {pres_std:.1f} hPa\n"
if 'track_length' in cluster_data.columns:
track_mean = cluster_data['track_length'].mean()
stats_text += f" π Avg Track Length: {track_mean:.1f} points\n"
if 'genesis_lat' in cluster_data.columns and 'genesis_lon' in cluster_data.columns:
lat_mean = cluster_data['genesis_lat'].mean()
lon_mean = cluster_data['genesis_lon'].mean()
stats_text += f" π― Genesis Region: {lat_mean:.1f}Β°N, {lon_mean:.1f}Β°E\n"
# Add interpretation
if wind_mean < 50:
stats_text += " π‘ Pattern: Weaker storm group\n"
elif wind_mean > 100:
stats_text += " π‘ Pattern: Intense storm group\n"
else:
stats_text += " π‘ Pattern: Moderate intensity group\n"
stats_text += "\n"
# Add explanation of the analysis
stats_text += "π INTERPRETATION GUIDE:\n"
stats_text += f"β’ {method.upper()} reduces storm characteristics to 2D for visualization\n"
stats_text += "β’ DBSCAN finds natural groupings without preset number of clusters\n"
stats_text += "β’ Each cluster represents storms with similar behavior patterns\n"
stats_text += "β’ Route colors match cluster colors from the similarity plot\n"
stats_text += "β’ Stars on map show average genesis locations for each cluster\n"
stats_text += "β’ Temporal plots show how each cluster behaves over time\n\n"
stats_text += f"π§ FEATURES USED FOR CLUSTERING:\n"
stats_text += f" Total: {len(feature_cols)} storm characteristics\n"
stats_text += f" Including: intensity, pressure, track shape, genesis location\n"
except Exception as stats_error:
stats_text = f"Error generating enhanced statistics: {str(stats_error)}"
return fig_cluster, fig_routes, fig_pressure, fig_wind, stats_text
except Exception as e:
logging.error(f"Error in enhanced clustering analysis: {e}")
import traceback
traceback.print_exc()
error_fig = go.Figure()
error_fig.add_annotation(
text=f"Error in clustering analysis: {str(e)}",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font_size=16
)
return error_fig, error_fig, error_fig, error_fig, f"Error in clustering: {str(e)}"
# -----------------------------
# ENHANCED: Advanced Prediction System with Route Forecasting
# -----------------------------
def create_advanced_prediction_model(typhoon_data):
"""Create advanced ML model for intensity and route prediction"""
try:
if typhoon_data is None or typhoon_data.empty:
return None, "No data available for model training"
# Prepare training data
features = []
targets = []
for sid in typhoon_data['SID'].unique():
storm_data = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
if len(storm_data) < 3: # Need at least 3 points for prediction
continue
for i in range(len(storm_data) - 1):
current = storm_data.iloc[i]
next_point = storm_data.iloc[i + 1]
# Extract features (current state)
feature_row = []
# Current position
feature_row.extend([
current.get('LAT', 20),
current.get('LON', 140)
])
# Current intensity
feature_row.extend([
current.get('USA_WIND', 30),
current.get('USA_PRES', 1000)
])
# Time features
if 'ISO_TIME' in current and pd.notna(current['ISO_TIME']):
month = current['ISO_TIME'].month
day_of_year = current['ISO_TIME'].dayofyear
else:
month = 9 # Peak season default
day_of_year = 250
feature_row.extend([month, day_of_year])
# Motion features (if previous point exists)
if i > 0:
prev = storm_data.iloc[i - 1]
dlat = current.get('LAT', 20) - prev.get('LAT', 20)
dlon = current.get('LON', 140) - prev.get('LON', 140)
speed = np.sqrt(dlat**2 + dlon**2)
bearing = np.arctan2(dlat, dlon)
else:
speed = 0
bearing = 0
feature_row.extend([speed, bearing])
features.append(feature_row)
# Target: next position and intensity
targets.append([
next_point.get('LAT', 20),
next_point.get('LON', 140),
next_point.get('USA_WIND', 30)
])
if len(features) < 10: # Need sufficient training data
return None, "Insufficient data for model training"
# Train model
X = np.array(features)
y = np.array(targets)
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create separate models for position and intensity
models = {}
# Position model (lat, lon)
pos_model = RandomForestRegressor(n_estimators=100, random_state=42)
pos_model.fit(X_train, y_train[:, :2])
models['position'] = pos_model
# Intensity model (wind speed)
int_model = RandomForestRegressor(n_estimators=100, random_state=42)
int_model.fit(X_train, y_train[:, 2])
models['intensity'] = int_model
# Calculate model performance
pos_pred = pos_model.predict(X_test)
int_pred = int_model.predict(X_test)
pos_mae = mean_absolute_error(y_test[:, :2], pos_pred)
int_mae = mean_absolute_error(y_test[:, 2], int_pred)
model_info = f"Position MAE: {pos_mae:.2f}Β°, Intensity MAE: {int_mae:.2f} kt"
return models, model_info
except Exception as e:
return None, f"Error creating prediction model: {str(e)}"
def rgb_string_to_hex(rgb_string):
"""Convert RGB string like 'rgb(255,0,0)' to hex format '#FF0000'"""
try:
if rgb_string.startswith('rgb(') and rgb_string.endswith(')'):
# Extract numbers from rgb(r,g,b)
rgb_values = rgb_string[4:-1].split(',')
r, g, b = [int(x.strip()) for x in rgb_values]
return f'#{r:02x}{g:02x}{b:02x}'
else:
# Already in hex or other format
return rgb_string
except:
return '#808080' # Default gray
def get_realistic_genesis_locations():
"""Get realistic typhoon genesis regions based on climatology"""
return {
"Western Pacific Main Development Region": {"lat": 12.5, "lon": 145.0, "description": "Peak activity zone (Guam area)"},
"South China Sea": {"lat": 15.0, "lon": 115.0, "description": "Secondary development region"},
"Philippine Sea": {"lat": 18.0, "lon": 135.0, "description": "Recurving storm region"},
"Marshall Islands": {"lat": 8.0, "lon": 165.0, "description": "Eastern development zone"},
"Monsoon Trough": {"lat": 10.0, "lon": 130.0, "description": "Monsoon-driven genesis"},
"ITCZ Region": {"lat": 6.0, "lon": 140.0, "description": "Near-equatorial development"},
"Subtropical Region": {"lat": 22.0, "lon": 125.0, "description": "Late season development"},
"Bay of Bengal": {"lat": 15.0, "lon": 88.0, "description": "Indian Ocean cyclones"},
"Eastern Pacific": {"lat": 12.0, "lon": -105.0, "description": "Hurricane development zone"},
"Atlantic MDR": {"lat": 12.0, "lon": -45.0, "description": "Main Development Region"}
}
def predict_storm_route_and_intensity_realistic(genesis_region, month, oni_value, models=None, forecast_hours=72, use_advanced_physics=True):
"""Realistic prediction with proper typhoon speeds and development"""
try:
genesis_locations = get_realistic_genesis_locations()
if genesis_region not in genesis_locations:
genesis_region = "Western Pacific Main Development Region" # Default
genesis_info = genesis_locations[genesis_region]
lat = genesis_info["lat"]
lon = genesis_info["lon"]
results = {
'current_prediction': {},
'route_forecast': [],
'confidence_scores': {},
'model_info': 'Realistic Genesis Model',
'genesis_info': genesis_info
}
# REALISTIC starting intensity - Tropical Depression level
base_intensity = 30 # Start at TD level (25-35 kt)
# Environmental factors for genesis
if oni_value > 1.0: # Strong El NiΓ±o - suppressed development
intensity_modifier = -6
elif oni_value > 0.5: # Moderate El NiΓ±o
intensity_modifier = -3
elif oni_value < -1.0: # Strong La NiΓ±a - enhanced development
intensity_modifier = +8
elif oni_value < -0.5: # Moderate La NiΓ±a
intensity_modifier = +5
else: # Neutral
intensity_modifier = oni_value * 2
# Seasonal genesis effects
seasonal_factors = {
1: -8, 2: -6, 3: -4, 4: -2, 5: 2, 6: 6,
7: 10, 8: 12, 9: 15, 10: 10, 11: 4, 12: -5
}
seasonal_modifier = seasonal_factors.get(month, 0)
# Genesis region favorability
region_factors = {
"Western Pacific Main Development Region": 8,
"South China Sea": 4,
"Philippine Sea": 5,
"Marshall Islands": 7,
"Monsoon Trough": 6,
"ITCZ Region": 3,
"Subtropical Region": 2,
"Bay of Bengal": 4,
"Eastern Pacific": 6,
"Atlantic MDR": 5
}
region_modifier = region_factors.get(genesis_region, 0)
# Calculate realistic starting intensity (TD level)
predicted_intensity = base_intensity + intensity_modifier + seasonal_modifier + region_modifier
predicted_intensity = max(25, min(40, predicted_intensity)) # Keep in TD-weak TS range
# Add realistic uncertainty for genesis
intensity_uncertainty = np.random.normal(0, 2)
predicted_intensity += intensity_uncertainty
predicted_intensity = max(25, min(38, predicted_intensity)) # TD range
results['current_prediction'] = {
'intensity_kt': predicted_intensity,
'pressure_hpa': 1008 - (predicted_intensity - 25) * 0.6, # Realistic TD pressure
'category': categorize_typhoon_enhanced(predicted_intensity),
'genesis_region': genesis_region
}
# REALISTIC route prediction with proper typhoon speeds
current_lat = lat
current_lon = lon
current_intensity = predicted_intensity
route_points = []
# Track storm development over time with REALISTIC SPEEDS
for hour in range(0, forecast_hours + 6, 6):
# REALISTIC typhoon motion - much faster speeds
# Typical typhoon forward speed: 15-25 km/h (0.14-0.23Β°/hour)
# Base forward speed depends on latitude and storm intensity
if current_lat < 20: # Low latitude - slower
base_speed = 0.12 # ~13 km/h
elif current_lat < 30: # Mid latitude - moderate
base_speed = 0.18 # ~20 km/h
else: # High latitude - faster
base_speed = 0.25 # ~28 km/h
# Intensity affects speed (stronger storms can move faster)
intensity_speed_factor = 1.0 + (current_intensity - 50) / 200
base_speed *= max(0.8, min(1.4, intensity_speed_factor))
# Beta drift (Coriolis effect) - realistic values
beta_drift_lat = 0.02 * np.sin(np.radians(current_lat))
beta_drift_lon = -0.05 * np.cos(np.radians(current_lat))
# Seasonal steering patterns with realistic speeds
if month in [6, 7, 8, 9]: # Peak season
ridge_strength = 1.2
ridge_position = 32 + 4 * np.sin(2 * np.pi * (month - 6) / 4)
else: # Off season
ridge_strength = 0.9
ridge_position = 28
# REALISTIC motion based on position relative to subtropical ridge
if current_lat < ridge_position - 10: # Well south of ridge - westward movement
lat_tendency = base_speed * 0.3 + beta_drift_lat # Slight poleward
lon_tendency = -base_speed * 0.9 + beta_drift_lon # Strong westward
elif current_lat > ridge_position - 3: # Near ridge - recurvature
lat_tendency = base_speed * 0.8 + beta_drift_lat # Strong poleward
lon_tendency = base_speed * 0.4 + beta_drift_lon # Eastward
else: # In between - normal WNW motion
lat_tendency = base_speed * 0.4 + beta_drift_lat # Moderate poleward
lon_tendency = -base_speed * 0.7 + beta_drift_lon # Moderate westward
# ENSO steering modulation (realistic effects)
if oni_value > 0.5: # El NiΓ±o - more eastward/poleward motion
lon_tendency += 0.05
lat_tendency += 0.02
elif oni_value < -0.5: # La NiΓ±a - more westward motion
lon_tendency -= 0.08
lat_tendency -= 0.01
# Add motion uncertainty that grows with time (realistic error growth)
motion_uncertainty = 0.02 + (hour / 120) * 0.04
lat_noise = np.random.normal(0, motion_uncertainty)
lon_noise = np.random.normal(0, motion_uncertainty)
# Update position with realistic speeds
current_lat += lat_tendency + lat_noise
current_lon += lon_tendency + lon_noise
# REALISTIC intensity evolution with proper development cycles
# Development phase (first 48-72 hours) - realistic intensification
if hour <= 48:
if current_intensity < 50: # Still weak - rapid development possible
if 10 <= current_lat <= 25 and 115 <= current_lon <= 165: # Favorable environment
intensity_tendency = 4.5 if current_intensity < 35 else 3.0
elif 120 <= current_lon <= 155 and 15 <= current_lat <= 20: # Best environment
intensity_tendency = 6.0 if current_intensity < 40 else 4.0
else:
intensity_tendency = 2.0
elif current_intensity < 80: # Moderate intensity
intensity_tendency = 2.5 if (120 <= current_lon <= 155 and 10 <= current_lat <= 25) else 1.0
else: # Already strong
intensity_tendency = 1.0
# Mature phase (48-120 hours) - peak intensity maintenance
elif hour <= 120:
if current_lat < 25 and current_lon > 120: # Still in favorable waters
if current_intensity < 120:
intensity_tendency = 1.5
else:
intensity_tendency = 0.0 # Maintain intensity
else:
intensity_tendency = -1.5
# Extended phase (120+ hours) - gradual weakening
else:
if current_lat < 30 and current_lon > 115:
intensity_tendency = -2.0 # Slow weakening
else:
intensity_tendency = -3.5 # Faster weakening
# Environmental modulation (realistic effects)
if current_lat > 35: # High latitude - rapid weakening
intensity_tendency -= 12
elif current_lat > 30: # Moderate latitude
intensity_tendency -= 5
elif current_lon < 110: # Land interaction
intensity_tendency -= 15
elif 125 <= current_lon <= 155 and 10 <= current_lat <= 25: # Warm pool
intensity_tendency += 2
elif 160 <= current_lon <= 180 and 15 <= current_lat <= 30: # Still warm
intensity_tendency += 1
# SST effects (realistic temperature impact)
if current_lat < 8: # Very warm but weak Coriolis
intensity_tendency += 0.5
elif 8 <= current_lat <= 20: # Sweet spot for development
intensity_tendency += 2.0
elif 20 < current_lat <= 30: # Marginal
intensity_tendency -= 1.0
elif current_lat > 30: # Cool waters
intensity_tendency -= 4.0
# Shear effects (simplified but realistic)
if month in [12, 1, 2, 3]: # High shear season
intensity_tendency -= 2.0
elif month in [7, 8, 9]: # Low shear season
intensity_tendency += 1.0
# Update intensity with realistic bounds and variability
intensity_noise = np.random.normal(0, 1.5) # Small random fluctuations
current_intensity += intensity_tendency + intensity_noise
current_intensity = max(20, min(185, current_intensity)) # Realistic range
# Calculate confidence based on forecast time and environment
base_confidence = 0.92
time_penalty = (hour / 120) * 0.45
environment_penalty = 0.15 if current_lat > 30 or current_lon < 115 else 0
confidence = max(0.25, base_confidence - time_penalty - environment_penalty)
# Determine development stage
if hour <= 24:
stage = 'Genesis'
elif hour <= 72:
stage = 'Development'
elif hour <= 120:
stage = 'Mature'
elif hour <= 240:
stage = 'Extended'
else:
stage = 'Long-term'
route_points.append({
'hour': hour,
'lat': current_lat,
'lon': current_lon,
'intensity_kt': current_intensity,
'category': categorize_typhoon_enhanced(current_intensity),
'confidence': confidence,
'development_stage': stage,
'forward_speed_kmh': base_speed * 111, # Convert to km/h
'pressure_hpa': max(900, 1013 - (current_intensity - 25) * 0.9)
})
results['route_forecast'] = route_points
# Realistic confidence scores
results['confidence_scores'] = {
'genesis': 0.88,
'early_development': 0.82,
'position_24h': 0.85,
'position_48h': 0.78,
'position_72h': 0.68,
'intensity_24h': 0.75,
'intensity_48h': 0.65,
'intensity_72h': 0.55,
'long_term': max(0.3, 0.8 - (forecast_hours / 240) * 0.5)
}
# Model information
results['model_info'] = f"Enhanced Realistic Model - {genesis_region}"
return results
except Exception as e:
logging.error(f"Realistic prediction error: {str(e)}")
return {
'error': f"Prediction error: {str(e)}",
'current_prediction': {'intensity_kt': 30, 'category': 'Tropical Depression'},
'route_forecast': [],
'confidence_scores': {},
'model_info': 'Error in prediction'
}
def create_animated_route_visualization(prediction_results, show_uncertainty=True, enable_animation=True):
"""Create comprehensive animated route visualization with intensity plots"""
try:
if 'route_forecast' not in prediction_results or not prediction_results['route_forecast']:
return None, "No route forecast data available"
route_data = prediction_results['route_forecast']
# Extract data for plotting
hours = [point['hour'] for point in route_data]
lats = [point['lat'] for point in route_data]
lons = [point['lon'] for point in route_data]
intensities = [point['intensity_kt'] for point in route_data]
categories = [point['category'] for point in route_data]
confidences = [point.get('confidence', 0.8) for point in route_data]
stages = [point.get('development_stage', 'Unknown') for point in route_data]
speeds = [point.get('forward_speed_kmh', 15) for point in route_data]
pressures = [point.get('pressure_hpa', 1013) for point in route_data]
# Create subplot layout with map and intensity plot
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('Storm Track Animation', 'Wind Speed vs Time', 'Forward Speed vs Time', 'Pressure vs Time'),
specs=[[{"type": "geo", "colspan": 2}, None],
[{"type": "xy"}, {"type": "xy"}]],
vertical_spacing=0.15,
row_heights=[0.7, 0.3]
)
if enable_animation:
# Add frames for animation
frames = []
# Static background elements first
# Add complete track as background
fig.add_trace(
go.Scattergeo(
lon=lons,
lat=lats,
mode='lines',
line=dict(color='lightgray', width=2, dash='dot'),
name='Complete Track',
showlegend=True,
opacity=0.4
),
row=1, col=1
)
# Genesis marker (always visible)
fig.add_trace(
go.Scattergeo(
lon=[lons[0]],
lat=[lats[0]],
mode='markers',
marker=dict(
size=25,
color='gold',
symbol='star',
line=dict(width=3, color='black')
),
name='Genesis',
showlegend=True,
hovertemplate=(
f"<b>GENESIS</b><br>"
f"Position: {lats[0]:.1f}Β°N, {lons[0]:.1f}Β°E<br>"
f"Initial: {intensities[0]:.0f} kt<br>"
f"Region: {prediction_results['genesis_info']['description']}<br>"
"<extra></extra>"
)
),
row=1, col=1
)
# Create animation frames
for i in range(len(route_data)):
frame_lons = lons[:i+1]
frame_lats = lats[:i+1]
frame_intensities = intensities[:i+1]
frame_categories = categories[:i+1]
frame_hours = hours[:i+1]
# Current position marker
current_color = enhanced_color_map.get(frame_categories[-1], 'rgb(128,128,128)')
current_size = 15 + (frame_intensities[-1] / 10)
frame_data = [
# Animated track up to current point
go.Scattergeo(
lon=frame_lons,
lat=frame_lats,
mode='lines+markers',
line=dict(color='blue', width=4),
marker=dict(
size=[8 + (intensity/15) for intensity in frame_intensities],
color=[enhanced_color_map.get(cat, 'rgb(128,128,128)') for cat in frame_categories],
opacity=0.8,
line=dict(width=1, color='white')
),
name='Current Track',
showlegend=False
),
# Current position highlight
go.Scattergeo(
lon=[frame_lons[-1]],
lat=[frame_lats[-1]],
mode='markers',
marker=dict(
size=current_size,
color=current_color,
symbol='circle',
line=dict(width=3, color='white')
),
name='Current Position',
showlegend=False,
hovertemplate=(
f"<b>Hour {route_data[i]['hour']}</b><br>"
f"Position: {lats[i]:.1f}Β°N, {lons[i]:.1f}Β°E<br>"
f"Intensity: {intensities[i]:.0f} kt<br>"
f"Category: {categories[i]}<br>"
f"Stage: {stages[i]}<br>"
f"Speed: {speeds[i]:.1f} km/h<br>"
f"Confidence: {confidences[i]*100:.0f}%<br>"
"<extra></extra>"
)
),
# Animated wind plot
go.Scatter(
x=frame_hours,
y=frame_intensities,
mode='lines+markers',
line=dict(color='red', width=3),
marker=dict(size=6, color='red'),
name='Wind Speed',
showlegend=False,
yaxis='y2'
),
# Animated speed plot
go.Scatter(
x=frame_hours,
y=speeds[:i+1],
mode='lines+markers',
line=dict(color='green', width=2),
marker=dict(size=4, color='green'),
name='Forward Speed',
showlegend=False,
yaxis='y3'
),
# Animated pressure plot
go.Scatter(
x=frame_hours,
y=pressures[:i+1],
mode='lines+markers',
line=dict(color='purple', width=2),
marker=dict(size=4, color='purple'),
name='Pressure',
showlegend=False,
yaxis='y4'
)
]
frames.append(go.Frame(
data=frame_data,
name=str(i),
layout=go.Layout(
title=f"Storm Development Animation - Hour {route_data[i]['hour']}<br>"
f"Intensity: {intensities[i]:.0f} kt | Category: {categories[i]} | Stage: {stages[i]} | Speed: {speeds[i]:.1f} km/h"
)
))
fig.frames = frames
# Add play/pause controls
fig.update_layout(
updatemenus=[
{
"buttons": [
{
"args": [None, {"frame": {"duration": 1000, "redraw": True},
"fromcurrent": True, "transition": {"duration": 300}}],
"label": "βΆοΈ Play",
"method": "animate"
},
{
"args": [[None], {"frame": {"duration": 0, "redraw": True},
"mode": "immediate", "transition": {"duration": 0}}],
"label": "βΈοΈ Pause",
"method": "animate"
},
{
"args": [None, {"frame": {"duration": 500, "redraw": True},
"fromcurrent": True, "transition": {"duration": 300}}],
"label": "β© Fast",
"method": "animate"
}
],
"direction": "left",
"pad": {"r": 10, "t": 87},
"showactive": False,
"type": "buttons",
"x": 0.1,
"xanchor": "right",
"y": 0,
"yanchor": "top"
}
],
sliders=[{
"active": 0,
"yanchor": "top",
"xanchor": "left",
"currentvalue": {
"font": {"size": 16},
"prefix": "Hour: ",
"visible": True,
"xanchor": "right"
},
"transition": {"duration": 300, "easing": "cubic-in-out"},
"pad": {"b": 10, "t": 50},
"len": 0.9,
"x": 0.1,
"y": 0,
"steps": [
{
"args": [[str(i)], {"frame": {"duration": 300, "redraw": True},
"mode": "immediate", "transition": {"duration": 300}}],
"label": f"H{route_data[i]['hour']}",
"method": "animate"
}
for i in range(0, len(route_data), max(1, len(route_data)//20)) # Limit slider steps
]
}]
)
else:
# Static view with all points
# Add genesis marker
fig.add_trace(
go.Scattergeo(
lon=[lons[0]],
lat=[lats[0]],
mode='markers',
marker=dict(
size=25,
color='gold',
symbol='star',
line=dict(width=3, color='black')
),
name='Genesis',
showlegend=True,
hovertemplate=(
f"<b>GENESIS</b><br>"
f"Position: {lats[0]:.1f}Β°N, {lons[0]:.1f}Β°E<br>"
f"Initial: {intensities[0]:.0f} kt<br>"
"<extra></extra>"
)
),
row=1, col=1
)
# Add full track with intensity coloring
for i in range(0, len(route_data), max(1, len(route_data)//50)): # Sample points for performance
point = route_data[i]
color = enhanced_color_map.get(point['category'], 'rgb(128,128,128)')
size = 8 + (point['intensity_kt'] / 12)
fig.add_trace(
go.Scattergeo(
lon=[point['lon']],
lat=[point['lat']],
mode='markers',
marker=dict(
size=size,
color=color,
opacity=point.get('confidence', 0.8),
line=dict(width=1, color='white')
),
name=f"Hour {point['hour']}" if i % 10 == 0 else None,
showlegend=(i % 10 == 0),
hovertemplate=(
f"<b>Hour {point['hour']}</b><br>"
f"Position: {point['lat']:.1f}Β°N, {point['lon']:.1f}Β°E<br>"
f"Intensity: {point['intensity_kt']:.0f} kt<br>"
f"Category: {point['category']}<br>"
f"Stage: {point.get('development_stage', 'Unknown')}<br>"
f"Speed: {point.get('forward_speed_kmh', 15):.1f} km/h<br>"
"<extra></extra>"
)
),
row=1, col=1
)
# Connect points with track line
fig.add_trace(
go.Scattergeo(
lon=lons,
lat=lats,
mode='lines',
line=dict(color='black', width=3),
name='Forecast Track',
showlegend=True
),
row=1, col=1
)
# Add static intensity, speed, and pressure plots
# Wind speed plot
fig.add_trace(
go.Scatter(
x=hours,
y=intensities,
mode='lines+markers',
line=dict(color='red', width=3),
marker=dict(size=6, color='red'),
name='Wind Speed',
showlegend=False
),
row=2, col=1
)
# Add category threshold lines
thresholds = [34, 64, 83, 96, 113, 137]
threshold_names = ['TS', 'C1', 'C2', 'C3', 'C4', 'C5']
for thresh, name in zip(thresholds, threshold_names):
fig.add_trace(
go.Scatter(
x=[min(hours), max(hours)],
y=[thresh, thresh],
mode='lines',
line=dict(color='gray', width=1, dash='dash'),
name=name,
showlegend=False,
hovertemplate=f"{name} Threshold: {thresh} kt<extra></extra>"
),
row=2, col=1
)
# Forward speed plot
fig.add_trace(
go.Scatter(
x=hours,
y=speeds,
mode='lines+markers',
line=dict(color='green', width=2),
marker=dict(size=4, color='green'),
name='Forward Speed',
showlegend=False
),
row=2, col=2
)
# Add uncertainty cone if requested
if show_uncertainty and len(route_data) > 1:
uncertainty_lats_upper = []
uncertainty_lats_lower = []
uncertainty_lons_upper = []
uncertainty_lons_lower = []
for i, point in enumerate(route_data):
# Uncertainty grows with time and decreases with confidence
base_uncertainty = 0.4 + (i / len(route_data)) * 1.8
confidence_factor = point.get('confidence', 0.8)
uncertainty = base_uncertainty / confidence_factor
uncertainty_lats_upper.append(point['lat'] + uncertainty)
uncertainty_lats_lower.append(point['lat'] - uncertainty)
uncertainty_lons_upper.append(point['lon'] + uncertainty)
uncertainty_lons_lower.append(point['lon'] - uncertainty)
uncertainty_lats = uncertainty_lats_upper + uncertainty_lats_lower[::-1]
uncertainty_lons = uncertainty_lons_upper + uncertainty_lons_lower[::-1]
fig.add_trace(
go.Scattergeo(
lon=uncertainty_lons,
lat=uncertainty_lats,
mode='lines',
fill='toself',
fillcolor='rgba(128,128,128,0.15)',
line=dict(color='rgba(128,128,128,0.4)', width=1),
name='Uncertainty Cone',
showlegend=True
),
row=1, col=1
)
# Enhanced layout
fig.update_layout(
title=f"Comprehensive Storm Development Analysis<br><sub>Starting from {prediction_results['genesis_info']['description']}</sub>",
height=1000, # Taller for better subplot visibility
width=1400, # Wider
showlegend=True
)
# Update geo layout
fig.update_geos(
projection_type="natural earth",
showland=True,
landcolor="LightGray",
showocean=True,
oceancolor="LightBlue",
showcoastlines=True,
coastlinecolor="DarkGray",
showlakes=True,
lakecolor="LightBlue",
center=dict(lat=np.mean(lats), lon=np.mean(lons)),
projection_scale=2.0,
row=1, col=1
)
# Update subplot axes
fig.update_xaxes(title_text="Forecast Hour", row=2, col=1)
fig.update_yaxes(title_text="Wind Speed (kt)", row=2, col=1)
fig.update_xaxes(title_text="Forecast Hour", row=2, col=2)
fig.update_yaxes(title_text="Forward Speed (km/h)", row=2, col=2)
# Generate enhanced forecast text
current = prediction_results['current_prediction']
genesis_info = prediction_results['genesis_info']
# Calculate some statistics
max_intensity = max(intensities)
max_intensity_time = hours[intensities.index(max_intensity)]
avg_speed = np.mean(speeds)
forecast_text = f"""
COMPREHENSIVE STORM DEVELOPMENT FORECAST
{'='*65}
GENESIS CONDITIONS:
β’ Region: {current.get('genesis_region', 'Unknown')}
β’ Description: {genesis_info['description']}
β’ Starting Position: {lats[0]:.1f}Β°N, {lons[0]:.1f}Β°E
β’ Initial Intensity: {current['intensity_kt']:.0f} kt (Tropical Depression)
β’ Genesis Pressure: {current.get('pressure_hpa', 1008):.0f} hPa
STORM CHARACTERISTICS:
β’ Peak Intensity: {max_intensity:.0f} kt at Hour {max_intensity_time}
β’ Average Forward Speed: {avg_speed:.1f} km/h
β’ Total Distance: {sum([speeds[i]/6 for i in range(len(speeds))]):.0f} km
β’ Final Position: {lats[-1]:.1f}Β°N, {lons[-1]:.1f}Β°E
β’ Forecast Duration: {hours[-1]} hours ({hours[-1]/24:.1f} days)
DEVELOPMENT TIMELINE:
β’ Hour 0 (Genesis): {intensities[0]:.0f} kt - {categories[0]}
β’ Hour 24: {intensities[min(4, len(intensities)-1)]:.0f} kt - {categories[min(4, len(categories)-1)]}
β’ Hour 48: {intensities[min(8, len(intensities)-1)]:.0f} kt - {categories[min(8, len(categories)-1)]}
β’ Hour 72: {intensities[min(12, len(intensities)-1)]:.0f} kt - {categories[min(12, len(categories)-1)]}
β’ Final: {intensities[-1]:.0f} kt - {categories[-1]}
MOTION ANALYSIS:
β’ Initial Motion: {speeds[0]:.1f} km/h
β’ Peak Speed: {max(speeds):.1f} km/h at Hour {hours[speeds.index(max(speeds))]}
β’ Final Motion: {speeds[-1]:.1f} km/h
CONFIDENCE ASSESSMENT:
β’ Genesis Likelihood: {prediction_results['confidence_scores'].get('genesis', 0.85)*100:.0f}%
β’ 24-hour Track: {prediction_results['confidence_scores'].get('position_24h', 0.85)*100:.0f}%
β’ 48-hour Track: {prediction_results['confidence_scores'].get('position_48h', 0.75)*100:.0f}%
β’ 72-hour Track: {prediction_results['confidence_scores'].get('position_72h', 0.65)*100:.0f}%
β’ Long-term: {prediction_results['confidence_scores'].get('long_term', 0.50)*100:.0f}%
FEATURES:
{"β
Animation Enabled - Use controls to watch development" if enable_animation else "π Static Analysis - All time steps displayed"}
β
Realistic Forward Speeds (15-25 km/h typical)
β
Environmental Coupling (ENSO, SST, Shear)
β
Multi-stage Development Cycle
β
Uncertainty Quantification
MODEL: {prediction_results['model_info']}
"""
return fig, forecast_text.strip()
except Exception as e:
error_msg = f"Error creating comprehensive visualization: {str(e)}"
logging.error(error_msg)
import traceback
traceback.print_exc()
return None, error_msg
# -----------------------------
# Regression Functions (Original)
# -----------------------------
def perform_wind_regression(start_year, start_month, end_year, end_month):
"""Perform wind regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI'])
data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int)
X = sm.add_constant(data['ONI'])
y = data['severe_typhoon']
try:
model = sm.Logit(y, X).fit(disp=0)
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Wind Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Wind Regression Error: {e}"
def perform_pressure_regression(start_year, start_month, end_year, end_month):
"""Perform pressure regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI'])
data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int)
X = sm.add_constant(data['ONI'])
y = data['intense_typhoon']
try:
model = sm.Logit(y, X).fit(disp=0)
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Pressure Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Pressure Regression Error: {e}"
def perform_longitude_regression(start_year, start_month, end_year, end_month):
"""Perform longitude regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI'])
data['western_typhoon'] = (data['LON']<=140).astype(int)
X = sm.add_constant(data['ONI'])
y = data['western_typhoon']
try:
model = sm.OLS(y, sm.add_constant(X)).fit()
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Longitude Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Longitude Regression Error: {e}"
# -----------------------------
# Visualization Functions (Enhanced)
# -----------------------------
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get full typhoon tracks"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
unique_storms = filtered_data['SID'].unique()
count = len(unique_storms)
fig = go.Figure()
for sid in unique_storms:
storm_data = typhoon_data[typhoon_data['SID']==sid]
if storm_data.empty:
continue
name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed"
basin = storm_data['SID'].iloc[0][:2]
storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0]
color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green')
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f"{name} ({basin})",
line=dict(width=1.5, color=color), hoverinfo="name"
))
if typhoon_search:
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if search_mask.any():
for sid in typhoon_data[search_mask]['SID'].unique():
storm_data = typhoon_data[typhoon_data['SID']==sid]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
name=f"MATCHED: {storm_data['NAME'].iloc[0]}",
line=dict(width=3, color='yellow'),
marker=dict(size=5), hoverinfo="name"
))
fig.update_layout(
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
geo=dict(
projection_type='natural earth',
showland=True,
showcoastlines=True,
landcolor='rgb(243,243,243)',
countrycolor='rgb(204,204,204)',
coastlinecolor='rgb(204,204,204)',
center=dict(lon=140, lat=20),
projection_scale=3
),
legend_title="Typhoons by ENSO Phase",
showlegend=True,
height=700
)
fig.add_annotation(
x=0.02, y=0.98, xref="paper", yref="paper",
text="Red: El NiΓ±o, Blue: La Nina, Green: Neutral",
showarrow=False, align="left",
bgcolor="rgba(255,255,255,0.8)"
)
return fig, f"Total typhoons displayed: {count}"
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get wind analysis with enhanced categorization"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
hover_data=['NAME','Year','Category'],
title='Wind Speed vs ONI',
labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'},
color_discrete_map=enhanced_color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
))
regression = perform_wind_regression(start_year, start_month, end_year, end_month)
return fig, regression
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get pressure analysis with enhanced categorization"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category',
hover_data=['NAME','Year','Category'],
title='Pressure vs ONI',
labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'},
color_discrete_map=enhanced_color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
))
regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
return fig, regression
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get longitude analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
title='Typhoon Generation Longitude vs ONI (All Years)')
if len(filtered_data) > 1:
X = np.array(filtered_data['LON']).reshape(-1,1)
y = filtered_data['ONI']
try:
model = sm.OLS(y, sm.add_constant(X)).fit()
y_pred = model.predict(sm.add_constant(X))
fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
slope = model.params[1]
slopes_text = f"All Years Slope: {slope:.4f}"
except Exception as e:
slopes_text = f"Regression Error: {e}"
else:
slopes_text = "Insufficient data for regression"
regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
return fig, slopes_text, regression
def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
"""Categorize typhoon by standard with enhanced TD support - FIXED for matplotlib"""
if pd.isna(wind_speed):
return 'Tropical Depression', '#808080'
if standard=='taiwan':
# Taiwan standard uses m/s, convert if needed
if wind_speed > 50: # Likely in knots, convert to m/s
wind_speed_ms = wind_speed * 0.514444
else:
wind_speed_ms = wind_speed
if wind_speed_ms >= 51.0:
return 'Strong Typhoon', '#FF0000' # Red
elif wind_speed_ms >= 33.7:
return 'Medium Typhoon', '#FFA500' # Orange
elif wind_speed_ms >= 17.2:
return 'Mild Typhoon', '#FFFF00' # Yellow
return 'Tropical Depression', '#808080' # Gray
else:
# Atlantic standard in knots
if wind_speed >= 137:
return 'C5 Super Typhoon', '#FF0000' # Red
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon', '#FFA500' # Orange
elif wind_speed >= 96:
return 'C3 Strong Typhoon', '#FFFF00' # Yellow
elif wind_speed >= 83:
return 'C2 Typhoon', '#00FF00' # Green
elif wind_speed >= 64:
return 'C1 Typhoon', '#00FFFF' # Cyan
elif wind_speed >= 34:
return 'Tropical Storm', '#0000FF' # Blue
return 'Tropical Depression', '#808080' # Gray
# -----------------------------
# ENHANCED: Animation Functions with Taiwan Standard Support
# -----------------------------
def get_available_years(typhoon_data):
"""Get all available years including 2025 - with error handling"""
try:
if typhoon_data is None or typhoon_data.empty:
return [str(year) for year in range(2000, 2026)]
if 'ISO_TIME' in typhoon_data.columns:
years = typhoon_data['ISO_TIME'].dt.year.dropna().unique()
elif 'SEASON' in typhoon_data.columns:
years = typhoon_data['SEASON'].dropna().unique()
else:
years = range(2000, 2026) # Default range including 2025
# Convert to strings and sort
year_strings = sorted([str(int(year)) for year in years if not pd.isna(year)])
# Ensure we have at least some years
if not year_strings:
return [str(year) for year in range(2000, 2026)]
return year_strings
except Exception as e:
print(f"Error in get_available_years: {e}")
return [str(year) for year in range(2000, 2026)]
def update_typhoon_options_enhanced(year, basin):
"""Enhanced typhoon options with TD support and 2025 data"""
try:
year = int(year)
# Filter by year - handle both ISO_TIME and SEASON columns
if 'ISO_TIME' in typhoon_data.columns:
year_mask = typhoon_data['ISO_TIME'].dt.year == year
elif 'SEASON' in typhoon_data.columns:
year_mask = typhoon_data['SEASON'] == year
else:
# Fallback - try to extract year from SID or other fields
year_mask = typhoon_data.index >= 0 # Include all data as fallback
year_data = typhoon_data[year_mask].copy()
# Filter by basin if specified
if basin != "All Basins":
basin_code = basin.split(' - ')[0] if ' - ' in basin else basin[:2]
if 'SID' in year_data.columns:
year_data = year_data[year_data['SID'].str.startswith(basin_code, na=False)]
elif 'BASIN' in year_data.columns:
year_data = year_data[year_data['BASIN'] == basin_code]
if year_data.empty:
return gr.update(choices=["No storms found"], value=None)
# Get unique storms - include ALL intensities (including TD)
storms = year_data.groupby('SID').agg({
'NAME': 'first',
'USA_WIND': 'max'
}).reset_index()
# Enhanced categorization including TD
storms['category'] = storms['USA_WIND'].apply(categorize_typhoon_enhanced)
# Create options with category information
options = []
for _, storm in storms.iterrows():
name = storm['NAME'] if pd.notna(storm['NAME']) and storm['NAME'] != '' else 'UNNAMED'
sid = storm['SID']
category = storm['category']
max_wind = storm['USA_WIND'] if pd.notna(storm['USA_WIND']) else 0
option = f"{name} ({sid}) - {category} ({max_wind:.0f}kt)"
options.append(option)
if not options:
return gr.update(choices=["No storms found"], value=None)
return gr.update(choices=sorted(options), value=options[0])
except Exception as e:
print(f"Error in update_typhoon_options_enhanced: {e}")
return gr.update(choices=["Error loading storms"], value=None)
def generate_enhanced_track_video(year, typhoon_selection, standard):
"""Enhanced track video generation with TD support, Taiwan standard, and 2025 compatibility"""
if not typhoon_selection or typhoon_selection == "No storms found":
return None
try:
# Extract SID from selection
sid = typhoon_selection.split('(')[1].split(')')[0]
# Get storm data
storm_df = typhoon_data[typhoon_data['SID'] == sid].copy()
if storm_df.empty:
print(f"No data found for storm {sid}")
return None
# Sort by time
if 'ISO_TIME' in storm_df.columns:
storm_df = storm_df.sort_values('ISO_TIME')
# Extract data for animation
lats = storm_df['LAT'].astype(float).values
lons = storm_df['LON'].astype(float).values
if 'USA_WIND' in storm_df.columns:
winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').fillna(0).values
else:
winds = np.full(len(lats), 30) # Default TD strength
# Enhanced metadata
storm_name = storm_df['NAME'].iloc[0] if pd.notna(storm_df['NAME'].iloc[0]) else "UNNAMED"
season = storm_df['SEASON'].iloc[0] if 'SEASON' in storm_df.columns else year
print(f"Generating video for {storm_name} ({sid}) with {len(lats)} track points using {standard} standard")
# Create figure with enhanced map
fig, ax = plt.subplots(figsize=(16, 10), subplot_kw={'projection': ccrs.PlateCarree()})
# Enhanced map features
ax.stock_img()
ax.add_feature(cfeature.COASTLINE, linewidth=0.8)
ax.add_feature(cfeature.BORDERS, linewidth=0.5)
ax.add_feature(cfeature.OCEAN, color='lightblue', alpha=0.5)
ax.add_feature(cfeature.LAND, color='lightgray', alpha=0.5)
# Set extent based on track
padding = 5
ax.set_extent([
min(lons) - padding, max(lons) + padding,
min(lats) - padding, max(lats) + padding
])
# Add gridlines
gl = ax.gridlines(draw_labels=True, alpha=0.3)
gl.top_labels = gl.right_labels = False
# Title with enhanced info and standard
ax.set_title(f"{season} {storm_name} ({sid}) Track Animation - {standard.upper()} Standard",
fontsize=18, fontweight='bold')
# Animation elements
line, = ax.plot([], [], 'b-', linewidth=3, alpha=0.7, label='Track')
point, = ax.plot([], [], 'o', markersize=15)
# Enhanced info display
info_box = ax.text(0.02, 0.98, '', transform=ax.transAxes,
fontsize=12, verticalalignment='top',
bbox=dict(boxstyle="round,pad=0.5", facecolor='white', alpha=0.9))
# Color legend with both standards - ENHANCED
legend_elements = []
if standard == 'taiwan':
categories = ['Tropical Depression', 'Mild Typhoon', 'Medium Typhoon', 'Strong Typhoon']
for category in categories:
color = get_taiwan_color(category)
legend_elements.append(plt.Line2D([0], [0], marker='o', color='w',
markerfacecolor=color, markersize=10, label=category))
else:
categories = ['Tropical Depression', 'Tropical Storm', 'C1 Typhoon', 'C2 Typhoon',
'C3 Strong Typhoon', 'C4 Very Strong Typhoon', 'C5 Super Typhoon']
for category in categories:
color = get_matplotlib_color(category)
legend_elements.append(plt.Line2D([0], [0], marker='o', color='w',
markerfacecolor=color, markersize=10, label=category))
ax.legend(handles=legend_elements, loc='upper right', fontsize=10)
def animate(frame):
try:
if frame >= len(lats):
return line, point, info_box
# Update track line
line.set_data(lons[:frame+1], lats[:frame+1])
# Update current position with appropriate categorization
current_wind = winds[frame]
if standard == 'taiwan':
category, color = categorize_typhoon_by_standard(current_wind, 'taiwan')
else:
category, color = categorize_typhoon_by_standard(current_wind, 'atlantic')
# Debug print for first few frames
if frame < 3:
print(f"Frame {frame}: Wind={current_wind:.1f}kt, Category={category}, Color={color}, Standard={standard}")
point.set_data([lons[frame]], [lats[frame]])
point.set_color(color)
point.set_markersize(10 + current_wind/8) # Size based on intensity
# Enhanced info display with standard information
if 'ISO_TIME' in storm_df.columns and frame < len(storm_df):
current_time = storm_df.iloc[frame]['ISO_TIME']
time_str = current_time.strftime('%Y-%m-%d %H:%M UTC') if pd.notna(current_time) else 'Unknown'
else:
time_str = f"Step {frame+1}"
# Convert wind speed for Taiwan standard display
if standard == 'taiwan':
wind_ms = current_wind * 0.514444 # Convert to m/s for display
wind_display = f"{current_wind:.0f} kt ({wind_ms:.1f} m/s)"
else:
wind_display = f"{current_wind:.0f} kt"
info_text = (
f"Storm: {storm_name}\n"
f"Time: {time_str}\n"
f"Position: {lats[frame]:.1f}Β°N, {lons[frame]:.1f}Β°E\n"
f"Max Wind: {wind_display}\n"
f"Category: {category}\n"
f"Standard: {standard.upper()}\n"
f"Frame: {frame+1}/{len(lats)}"
)
info_box.set_text(info_text)
return line, point, info_box
except Exception as e:
print(f"Error in animate frame {frame}: {e}")
return line, point, info_box
# Create animation
anim = animation.FuncAnimation(
fig, animate, frames=len(lats),
interval=400, blit=False, repeat=True # Slightly slower for better viewing
)
# Save animation
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4',
dir=tempfile.gettempdir())
# Enhanced writer settings
writer = animation.FFMpegWriter(
fps=3, bitrate=2000, codec='libx264', # Slower FPS for better visibility
extra_args=['-pix_fmt', 'yuv420p'] # Better compatibility
)
print(f"Saving animation to {temp_file.name}")
anim.save(temp_file.name, writer=writer, dpi=120) # Higher DPI for better quality
plt.close(fig)
print(f"Video generated successfully: {temp_file.name}")
return temp_file.name
except Exception as e:
print(f"Error generating video: {e}")
import traceback
traceback.print_exc()
return None
# Simplified wrapper for backward compatibility - FIXED
def simplified_track_video(year, basin, typhoon, standard):
"""Simplified track video function with fixed color handling"""
if not typhoon:
return None
return generate_enhanced_track_video(year, typhoon, standard)
# -----------------------------
# Load & Process Data
# -----------------------------
# Global variables initialization
oni_data = None
typhoon_data = None
merged_data = None
def initialize_data():
"""Initialize all data safely"""
global oni_data, typhoon_data, merged_data
try:
logging.info("Starting data loading process...")
update_oni_data()
oni_data, typhoon_data = load_data_fixed(ONI_DATA_PATH, TYPHOON_DATA_PATH)
if oni_data is not None and typhoon_data is not None:
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
logging.info("Data loading complete.")
else:
logging.error("Failed to load required data")
# Create minimal fallback data
oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0],
'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0],
'Oct': [0], 'Nov': [0], 'Dec': [0]})
typhoon_data = create_fallback_typhoon_data()
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
except Exception as e:
logging.error(f"Error during data initialization: {e}")
# Create minimal fallback data
oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0],
'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0],
'Oct': [0], 'Nov': [0], 'Dec': [0]})
typhoon_data = create_fallback_typhoon_data()
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
# Initialize data
initialize_data()
# -----------------------------
# ENHANCED: Gradio Interface with Fixed Route Visualization and Enhanced Features
# -----------------------------
def create_interface():
"""Create the enhanced Gradio interface with robust error handling"""
try:
# Ensure data is available
if oni_data is None or typhoon_data is None or merged_data is None:
logging.warning("Data not properly loaded, creating minimal interface")
return create_minimal_fallback_interface()
# Get safe data statistics
try:
total_storms = len(typhoon_data['SID'].unique()) if 'SID' in typhoon_data.columns else 0
total_records = len(typhoon_data)
available_years = get_available_years(typhoon_data)
year_range_display = f"{available_years[0]} - {available_years[-1]}" if available_years else "Unknown"
except Exception as e:
logging.error(f"Error getting data statistics: {e}")
total_storms = 0
total_records = 0
year_range_display = "Unknown"
available_years = [str(year) for year in range(2000, 2026)]
with gr.Blocks(title="Enhanced Typhoon Analysis Platform", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πͺοΈ Enhanced Typhoon Analysis Platform")
gr.Markdown("**Advanced ML clustering, route predictions, and comprehensive tropical cyclone analysis including Tropical Depressions**")
with gr.Tab("π Overview"):
overview_text = f"""
## Welcome to the Enhanced Typhoon Analysis Dashboard
This dashboard provides comprehensive analysis of typhoon data in relation to ENSO phases with advanced machine learning capabilities.
### π Enhanced Features:
- **Advanced ML Clustering**: UMAP/t-SNE storm pattern analysis with separate visualizations
- **Predictive Routing**: Advanced storm track and intensity forecasting with uncertainty quantification
- **Complete TD Support**: Now includes Tropical Depressions (< 34 kt)
- **Taiwan Standard**: Full support for Taiwan meteorological classification system
- **2025 Data Ready**: Real-time compatibility with current year data
- **Enhanced Animations**: High-quality storm track visualizations with both standards
### π Data Status:
- **ONI Data**: {len(oni_data)} years loaded
- **Typhoon Data**: {total_records:,} records loaded
- **Merged Data**: {len(merged_data):,} typhoons with ONI values
- **Available Years**: {year_range_display}
### π§ Technical Capabilities:
- **UMAP Clustering**: {"β
Available" if UMAP_AVAILABLE else "β οΈ Limited to t-SNE/PCA"}
- **AI Predictions**: {"π§ Deep Learning" if CNN_AVAILABLE else "π¬ Physics-based"}
- **Enhanced Categorization**: Tropical Depression to Super Typhoon
- **Platform**: Optimized for Hugging Face Spaces
### π Research Applications:
- Climate change impact studies
- Seasonal forecasting research
- Storm pattern classification
- ENSO-typhoon relationship analysis
- Intensity prediction model development
"""
gr.Markdown(overview_text)
with gr.Tab("π¬ Advanced ML Clustering"):
gr.Markdown("## π― Storm Pattern Analysis with Separate Visualizations")
gr.Markdown("**Four separate plots: Clustering, Routes, Pressure Evolution, and Wind Evolution**")
with gr.Row():
with gr.Column(scale=2):
reduction_method = gr.Dropdown(
choices=['UMAP', 't-SNE', 'PCA'],
value='UMAP' if UMAP_AVAILABLE else 't-SNE',
label="π Dimensionality Reduction Method",
info="UMAP provides better global structure preservation"
)
with gr.Column(scale=1):
analyze_clusters_btn = gr.Button("π Generate All Cluster Analyses", variant="primary", size="lg")
with gr.Row():
with gr.Column():
cluster_plot = gr.Plot(label="π Storm Clustering Analysis")
with gr.Column():
routes_plot = gr.Plot(label="πΊοΈ Clustered Storm Routes")
with gr.Row():
with gr.Column():
pressure_plot = gr.Plot(label="π‘οΈ Pressure Evolution by Cluster")
with gr.Column():
wind_plot = gr.Plot(label="π¨ Wind Speed Evolution by Cluster")
with gr.Row():
cluster_stats = gr.Textbox(label="π Detailed Cluster Statistics", lines=15, max_lines=20)
def run_separate_clustering_analysis(method):
try:
# Extract features for clustering
storm_features = extract_storm_features(typhoon_data)
if storm_features is None:
return None, None, None, None, "Error: Could not extract storm features"
fig_cluster, fig_routes, fig_pressure, fig_wind, stats = create_separate_clustering_plots(
storm_features, typhoon_data, method.lower()
)
return fig_cluster, fig_routes, fig_pressure, fig_wind, stats
except Exception as e:
import traceback
error_details = traceback.format_exc()
error_msg = f"Error: {str(e)}\n\nDetails:\n{error_details}"
return None, None, None, None, error_msg
analyze_clusters_btn.click(
fn=run_separate_clustering_analysis,
inputs=[reduction_method],
outputs=[cluster_plot, routes_plot, pressure_plot, wind_plot, cluster_stats]
)
cluster_info_text = """
### π Enhanced Clustering Features:
- **Separate Visualizations**: Four distinct plots for comprehensive analysis
- **Multi-dimensional Analysis**: Uses 15+ storm characteristics including intensity, track shape, genesis location
- **Route Visualization**: Geographic storm tracks colored by cluster membership
- **Temporal Analysis**: Pressure and wind evolution patterns by cluster
- **DBSCAN Clustering**: Automatic pattern discovery without predefined cluster count
- **Interactive**: Hover over points to see storm details, zoom and pan all plots
### π― How to Interpret:
- **Clustering Plot**: Each dot is a storm positioned by similarity (close = similar characteristics)
- **Routes Plot**: Actual geographic storm tracks, colored by which cluster they belong to
- **Pressure Plot**: Shows how pressure changes over time for storms in each cluster
- **Wind Plot**: Shows wind speed evolution patterns for each cluster
- **Cluster Colors**: Each cluster gets a unique color across all four visualizations
"""
gr.Markdown(cluster_info_text)
with gr.Tab("π Realistic Storm Genesis & Prediction"):
gr.Markdown("## π Realistic Typhoon Development from Genesis")
if CNN_AVAILABLE:
gr.Markdown("π§ **Deep Learning models available** - TensorFlow loaded successfully")
method_description = "Hybrid CNN-Physics genesis modeling with realistic development cycles"
else:
gr.Markdown("π¬ **Physics-based models available** - Using climatological relationships")
method_description = "Advanced physics-based genesis modeling with environmental coupling"
gr.Markdown(f"**Current Method**: {method_description}")
gr.Markdown("**π Realistic Genesis**: Select from climatologically accurate development regions")
gr.Markdown("**π TD Starting Point**: Storms begin at realistic Tropical Depression intensities (25-35 kt)")
gr.Markdown("**π¬ Animation Support**: Watch storm development unfold over time")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### π Genesis Configuration")
genesis_options = list(get_realistic_genesis_locations().keys())
genesis_region = gr.Dropdown(
choices=genesis_options,
value="Western Pacific Main Development Region",
label="Typhoon Genesis Region",
info="Select realistic development region based on climatology"
)
# Display selected region info
def update_genesis_info(region):
locations = get_realistic_genesis_locations()
if region in locations:
info = locations[region]
return f"π Location: {info['lat']:.1f}Β°N, {info['lon']:.1f}Β°E\nπ {info['description']}"
return "Select a genesis region"
genesis_info_display = gr.Textbox(
label="Selected Region Info",
lines=2,
interactive=False,
value=update_genesis_info("Western Pacific Main Development Region")
)
genesis_region.change(
fn=update_genesis_info,
inputs=[genesis_region],
outputs=[genesis_info_display]
)
with gr.Row():
pred_month = gr.Slider(1, 12, label="Month", value=9, info="Peak season: Jul-Oct")
pred_oni = gr.Number(label="ONI Value", value=0.0, info="ENSO index (-3 to 3)")
with gr.Row():
forecast_hours = gr.Number(
label="Forecast Length (hours)",
value=72,
minimum=20,
maximum=1000,
step=6,
info="Extended forecasting: 20-1000 hours (42 days max)"
)
advanced_physics = gr.Checkbox(
label="Advanced Physics",
value=True,
info="Enhanced environmental modeling"
)
with gr.Row():
show_uncertainty = gr.Checkbox(label="Show Uncertainty Cone", value=True)
enable_animation = gr.Checkbox(
label="Enable Animation",
value=True,
info="Animated storm development vs static view"
)
with gr.Column(scale=1):
gr.Markdown("### βοΈ Prediction Controls")
predict_btn = gr.Button("π Generate Realistic Storm Forecast", variant="primary", size="lg")
gr.Markdown("### π Genesis Conditions")
current_intensity = gr.Number(label="Genesis Intensity (kt)", interactive=False)
current_category = gr.Textbox(label="Initial Category", interactive=False)
model_confidence = gr.Textbox(label="Model Info", interactive=False)
with gr.Row():
route_plot = gr.Plot(label="πΊοΈ Advanced Route & Intensity Forecast")
with gr.Row():
forecast_details = gr.Textbox(label="π Detailed Forecast Summary", lines=20, max_lines=25)
def run_realistic_prediction(region, month, oni, hours, advanced_phys, uncertainty, animation):
try:
# Run realistic prediction with genesis region
results = predict_storm_route_and_intensity_realistic(
region, month, oni,
forecast_hours=hours,
use_advanced_physics=advanced_phys
)
# Extract genesis conditions
current = results['current_prediction']
intensity = current['intensity_kt']
category = current['category']
genesis_info = results.get('genesis_info', {})
# Create enhanced visualization
fig, forecast_text = create_animated_route_visualization(
results, uncertainty, animation
)
model_info = f"{results['model_info']}\nGenesis: {genesis_info.get('description', 'Unknown')}"
return (
intensity,
category,
model_info,
fig,
forecast_text
)
except Exception as e:
error_msg = f"Realistic prediction failed: {str(e)}"
logging.error(error_msg)
import traceback
traceback.print_exc()
return (
30, "Tropical Depression", f"Prediction failed: {str(e)}",
None, f"Error generating realistic forecast: {str(e)}"
)
predict_btn.click(
fn=run_realistic_prediction,
inputs=[genesis_region, pred_month, pred_oni, forecast_hours, advanced_physics, show_uncertainty, enable_animation],
outputs=[current_intensity, current_category, model_confidence, route_plot, forecast_details]
)
prediction_info_text = """
### π Realistic Storm Genesis Features:
- **Climatological Genesis Regions**: 10 realistic development zones based on historical data
- **Tropical Depression Starting Point**: Storms begin at realistic 25-38 kt intensities
- **Realistic Typhoon Speeds**: Forward motion 15-25 km/h (matching observations)
- **Extended Time Range**: 20-1000 hours (up to 42 days) with user input control
- **Comprehensive Animation**: Watch development with wind/speed/pressure plots
- **Environmental Coupling**: Advanced physics with ENSO, SST, shear, Ξ²-drift, ridge patterns
### π Enhanced Development Stages:
- **Genesis (0-24h)**: Initial cyclogenesis at Tropical Depression level
- **Development (24-72h)**: Rapid intensification in favorable environment (3-6 kt/h)
- **Mature (72-120h)**: Peak intensity phase with environmental modulation
- **Extended (120-240h)**: Continued tracking with realistic weakening
- **Long-term (240h+)**: Extended forecasting for research and planning
### πββοΈ Realistic Motion Physics:
- **Low Latitude (< 20Β°N)**: 12-15 km/h typical speeds
- **Mid Latitude (20-30Β°N)**: 18-22 km/h moderate speeds
- **High Latitude (> 30Β°N)**: 25-30 km/h fast extratropical transition
- **Intensity Effects**: Stronger storms can move faster in steering flow
- **Beta Drift**: Coriolis-induced poleward and westward motion
- **Ridge Interaction**: Realistic recurvature patterns
### π Genesis Region Selection:
- **Western Pacific MDR**: Peak activity zone near Guam (12.5Β°N, 145Β°E)
- **South China Sea**: Secondary development region (15Β°N, 115Β°E)
- **Philippine Sea**: Recurving storm region (18Β°N, 135Β°E)
- **Marshall Islands**: Eastern development zone (8Β°N, 165Β°E)
- **Monsoon Trough**: Monsoon-driven genesis (10Β°N, 130Β°E)
- **Other Basins**: Bay of Bengal, Eastern Pacific, Atlantic options
### π¬ Enhanced Animation Features:
- **Real-time Development**: Watch TD evolve to typhoon intensity
- **Multi-plot Display**: Track + Wind Speed + Forward Speed plots
- **Interactive Controls**: Play/pause/fast buttons and time slider
- **Stage Tracking**: Visual indicators for development phases
- **Speed Analysis**: Forward motion tracking throughout lifecycle
- **Performance Optimized**: Smooth animation even for 1000+ hour forecasts
### π¬ Advanced Physics Model:
- **Realistic Intensification**: 3-6 kt/h development rates in favorable conditions
- **Environmental Coupling**: SST, wind shear, Coriolis effects
- **Steering Flow**: Subtropical ridge position and ENSO modulation
- **Motion Variability**: Growing uncertainty with forecast time
- **Pressure-Wind Relationship**: Realistic intensity-pressure coupling
- **Long-term Climatology**: Extended forecasting using seasonal patterns
"""
gr.Markdown(prediction_info_text)
with gr.Tab("πΊοΈ Track Visualization"):
with gr.Row():
start_year = gr.Number(label="Start Year", value=2020)
start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
end_year = gr.Number(label="End Year", value=2025)
end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
typhoon_search = gr.Textbox(label="Typhoon Search")
analyze_btn = gr.Button("Generate Tracks")
tracks_plot = gr.Plot()
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
analyze_btn.click(
fn=get_full_tracks,
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
outputs=[tracks_plot, typhoon_count]
)
with gr.Tab("π¨ Wind Analysis"):
with gr.Row():
wind_start_year = gr.Number(label="Start Year", value=2020)
wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
wind_end_year = gr.Number(label="End Year", value=2024)
wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
wind_typhoon_search = gr.Textbox(label="Typhoon Search")
wind_analyze_btn = gr.Button("Generate Wind Analysis")
wind_scatter = gr.Plot()
wind_regression_results = gr.Textbox(label="Wind Regression Results")
wind_analyze_btn.click(
fn=get_wind_analysis,
inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
outputs=[wind_scatter, wind_regression_results]
)
with gr.Tab("π‘οΈ Pressure Analysis"):
with gr.Row():
pressure_start_year = gr.Number(label="Start Year", value=2020)
pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
pressure_end_year = gr.Number(label="End Year", value=2024)
pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
pressure_scatter = gr.Plot()
pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
pressure_analyze_btn.click(
fn=get_pressure_analysis,
inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
outputs=[pressure_scatter, pressure_regression_results]
)
with gr.Tab("π Longitude Analysis"):
with gr.Row():
lon_start_year = gr.Number(label="Start Year", value=2020)
lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
lon_end_year = gr.Number(label="End Year", value=2020)
lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
lon_analyze_btn = gr.Button("Generate Longitude Analysis")
regression_plot = gr.Plot()
slopes_text = gr.Textbox(label="Regression Slopes")
lon_regression_results = gr.Textbox(label="Longitude Regression Results")
lon_analyze_btn.click(
fn=get_longitude_analysis,
inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
outputs=[regression_plot, slopes_text, lon_regression_results]
)
with gr.Tab("π¬ Enhanced Track Animation"):
gr.Markdown("## π₯ High-Quality Storm Track Visualization (Atlantic & Taiwan Standards)")
with gr.Row():
year_dropdown = gr.Dropdown(
label="Year",
choices=available_years,
value=available_years[-1] if available_years else "2024"
)
basin_dropdown = gr.Dropdown(
label="Basin",
choices=["All Basins", "WP - Western Pacific", "EP - Eastern Pacific", "NA - North Atlantic"],
value="All Basins"
)
with gr.Row():
typhoon_dropdown = gr.Dropdown(label="Storm Selection (All Categories Including TD)")
standard_dropdown = gr.Dropdown(
label="π Classification Standard",
choices=['atlantic', 'taiwan'],
value='atlantic',
info="Atlantic: International standard | Taiwan: Local meteorological standard"
)
generate_video_btn = gr.Button("π¬ Generate Enhanced Animation", variant="primary")
video_output = gr.Video(label="Storm Track Animation")
# Update storm options when year or basin changes
for input_comp in [year_dropdown, basin_dropdown]:
input_comp.change(
fn=update_typhoon_options_enhanced,
inputs=[year_dropdown, basin_dropdown],
outputs=[typhoon_dropdown]
)
# Generate video
generate_video_btn.click(
fn=generate_enhanced_track_video,
inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
outputs=[video_output]
)
animation_info_text = """
### π¬ Enhanced Animation Features:
- **Dual Standards**: Full support for both Atlantic and Taiwan classification systems
- **Full TD Support**: Now displays Tropical Depressions (< 34 kt) in gray
- **2025 Compatibility**: Complete support for current year data
- **Enhanced Maps**: Better cartographic projections with terrain features
- **Smart Scaling**: Storm symbols scale dynamically with intensity
- **Real-time Info**: Live position, time, and meteorological data display
- **Professional Styling**: Publication-quality animations with proper legends
- **Optimized Export**: Fast rendering with web-compatible video formats
### π Taiwan Standard Features:
- **m/s Display**: Shows both knots and meters per second
- **Local Categories**: TD β Mild β Medium β Strong Typhoon
- **Color Coding**: Gray β Yellow β Orange β Red
- **CWB Compatible**: Matches Central Weather Bureau classifications
"""
gr.Markdown(animation_info_text)
with gr.Tab("π Data Statistics & Insights"):
gr.Markdown("## π Comprehensive Dataset Analysis")
# Create enhanced data summary
try:
if len(typhoon_data) > 0:
# Storm category distribution
storm_cats = typhoon_data.groupby('SID')['USA_WIND'].max().apply(categorize_typhoon_enhanced)
cat_counts = storm_cats.value_counts()
# Create distribution chart with enhanced colors
fig_dist = px.bar(
x=cat_counts.index,
y=cat_counts.values,
title="Storm Intensity Distribution (Including Tropical Depressions)",
labels={'x': 'Category', 'y': 'Number of Storms'},
color=cat_counts.index,
color_discrete_map=enhanced_color_map
)
# Seasonal distribution
if 'ISO_TIME' in typhoon_data.columns:
seasonal_data = typhoon_data.copy()
seasonal_data['Month'] = seasonal_data['ISO_TIME'].dt.month
monthly_counts = seasonal_data.groupby(['Month', 'SID']).size().groupby('Month').size()
fig_seasonal = px.bar(
x=monthly_counts.index,
y=monthly_counts.values,
title="Seasonal Storm Distribution",
labels={'x': 'Month', 'y': 'Number of Storms'},
color=monthly_counts.values,
color_continuous_scale='Viridis'
)
else:
fig_seasonal = None
# Basin distribution
if 'SID' in typhoon_data.columns:
basin_data = typhoon_data['SID'].str[:2].value_counts()
fig_basin = px.pie(
values=basin_data.values,
names=basin_data.index,
title="Distribution by Basin"
)
else:
fig_basin = None
with gr.Row():
gr.Plot(value=fig_dist)
if fig_seasonal:
with gr.Row():
gr.Plot(value=fig_seasonal)
if fig_basin:
with gr.Row():
gr.Plot(value=fig_basin)
except Exception as e:
gr.Markdown(f"Visualization error: {str(e)}")
# Enhanced statistics - FIXED formatting
total_storms = len(typhoon_data['SID'].unique()) if 'SID' in typhoon_data.columns else 0
total_records = len(typhoon_data)
if 'SEASON' in typhoon_data.columns:
try:
min_year = int(typhoon_data['SEASON'].min())
max_year = int(typhoon_data['SEASON'].max())
year_range = f"{min_year}-{max_year}"
years_covered = typhoon_data['SEASON'].nunique()
except (ValueError, TypeError):
year_range = "Unknown"
years_covered = 0
else:
year_range = "Unknown"
years_covered = 0
if 'SID' in typhoon_data.columns:
try:
basins_available = ', '.join(sorted(typhoon_data['SID'].str[:2].unique()))
avg_storms_per_year = total_storms / max(years_covered, 1)
except Exception:
basins_available = "Unknown"
avg_storms_per_year = 0
else:
basins_available = "Unknown"
avg_storms_per_year = 0
# TD specific statistics
try:
if 'USA_WIND' in typhoon_data.columns:
td_storms = len(typhoon_data[typhoon_data['USA_WIND'] < 34]['SID'].unique())
ts_storms = len(typhoon_data[(typhoon_data['USA_WIND'] >= 34) & (typhoon_data['USA_WIND'] < 64)]['SID'].unique())
typhoon_storms = len(typhoon_data[typhoon_data['USA_WIND'] >= 64]['SID'].unique())
td_percentage = (td_storms / max(total_storms, 1)) * 100
else:
td_storms = ts_storms = typhoon_storms = 0
td_percentage = 0
except Exception as e:
print(f"Error calculating TD statistics: {e}")
td_storms = ts_storms = typhoon_storms = 0
td_percentage = 0
# Create statistics text safely
stats_text = f"""
### π Enhanced Dataset Summary:
- **Total Unique Storms**: {total_storms:,}
- **Total Track Records**: {total_records:,}
- **Year Range**: {year_range} ({years_covered} years)
- **Basins Available**: {basins_available}
- **Average Storms/Year**: {avg_storms_per_year:.1f}
### πͺοΈ Storm Category Breakdown:
- **Tropical Depressions**: {td_storms:,} storms ({td_percentage:.1f}%)
- **Tropical Storms**: {ts_storms:,} storms
- **Typhoons (C1-C5)**: {typhoon_storms:,} storms
### π Platform Capabilities:
- **Complete TD Analysis** - First platform to include comprehensive TD tracking
- **Dual Classification Systems** - Both Atlantic and Taiwan standards supported
- **Advanced ML Clustering** - DBSCAN pattern recognition with separate visualizations
- **Real-time Predictions** - Physics-based and optional CNN intensity forecasting
- **2025 Data Ready** - Full compatibility with current season data
- **Enhanced Animations** - Professional-quality storm track videos
- **Multi-basin Analysis** - Comprehensive Pacific and Atlantic coverage
### π¬ Research Applications:
- Climate change impact studies
- Seasonal forecasting research
- Storm pattern classification
- ENSO-typhoon relationship analysis
- Intensity prediction model development
- Cross-regional classification comparisons
"""
gr.Markdown(stats_text)
return demo
except Exception as e:
logging.error(f"Error creating Gradio interface: {e}")
import traceback
traceback.print_exc()
# Create a minimal fallback interface
return create_minimal_fallback_interface()
def create_minimal_fallback_interface():
"""Create a minimal fallback interface when main interface fails"""
with gr.Blocks() as demo:
gr.Markdown("# Enhanced Typhoon Analysis Platform")
gr.Markdown("**Notice**: Loading with minimal interface due to data issues.")
with gr.Tab("Status"):
gr.Markdown("""
## Platform Status
The application is running but encountered issues loading the full interface.
This could be due to:
- Data loading problems
- Missing dependencies
- Configuration issues
### Available Features:
- Basic interface is functional
- Error logs are being generated
- System is ready for debugging
### Next Steps:
1. Check the console logs for detailed error information
2. Verify all required data files are accessible
3. Ensure all dependencies are properly installed
4. Try restarting the application
""")
with gr.Tab("Debug"):
gr.Markdown("## Debug Information")
def get_debug_info():
debug_text = f"""
Python Environment:
- Working Directory: {os.getcwd()}
- Data Path: {DATA_PATH}
- UMAP Available: {UMAP_AVAILABLE}
- CNN Available: {CNN_AVAILABLE}
Data Status:
- ONI Data: {'Loaded' if oni_data is not None else 'Failed'}
- Typhoon Data: {'Loaded' if typhoon_data is not None else 'Failed'}
- Merged Data: {'Loaded' if merged_data is not None else 'Failed'}
File Checks:
- ONI Path Exists: {os.path.exists(ONI_DATA_PATH)}
- Typhoon Path Exists: {os.path.exists(TYPHOON_DATA_PATH)}
"""
return debug_text
debug_btn = gr.Button("Get Debug Info")
debug_output = gr.Textbox(label="Debug Information", lines=15)
debug_btn.click(fn=get_debug_info, outputs=debug_output)
return demo
# Create and launch the interface
demo = create_interface()
if __name__ == "__main__":
demo.launch(share=True) # Enable sharing with public link |