File size: 6,954 Bytes
75ae599 18668ed f494b68 12a86ab 236bf74 18668ed 12a86ab 18668ed 58bb914 236bf74 58a8df2 c6b4946 18668ed c6b4946 18668ed 236bf74 18668ed 236bf74 18668ed 236bf74 18668ed 12a86ab 236bf74 18668ed 58bb914 18668ed 236bf74 58bb914 18668ed 58bb914 18668ed 58bb914 18668ed 58bb914 236bf74 12a86ab 236bf74 18668ed 12a86ab 18668ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import smtplib
import gradio as gr
import tensorflow as tf
import numpy as np
from email.message import EmailMessage
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
from reportlab.platypus import Table, TableStyle
# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")
# Read HTML content from `re.html`
with open("templates/re.html", "r", encoding="utf-8") as file:
html_content = file.read()
# List of sample images
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
# Function to send email
def send_email(receiver_email, file_path):
sender_email = "[email protected]"
sender_password = "your_email_password"
msg = EmailMessage()
msg["Subject"] = "Bone Fracture Detection Report"
msg["From"] = sender_email
msg["To"] = receiver_email
msg.set_content("Please find attached your bone fracture detection report.")
with open(file_path, "rb") as f:
file_data = f.read()
file_name = os.path.basename(file_path)
msg.add_attachment(file_data, maintype="application", subtype="pdf", filename=file_name)
try:
with smtplib.SMTP_SSL("smtp.example.com", 465) as server:
server.login(sender_email, sender_password)
server.send_message(msg)
return "Report sent successfully."
except Exception as e:
return f"Error sending email: {e}"
# Function to process X-ray and generate a PDF report
def generate_report(name, age, gender, weight, height, allergies, cause, xray, email):
# Validate inputs
name = name[:50]
cause = " ".join(cause.split()[:100]) # Limit to 100 words
image_size = (224, 224)
def predict_fracture(xray_path):
img = Image.open(xray_path).resize(image_size)
img_array = image.img_to_array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
prediction = model.predict(img_array)[0][0]
return prediction
# Predict fracture
prediction = predict_fracture(xray)
diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
# Injury severity classification
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
# Treatment details
treatment_data = [
["Severity Level", "Recommended Treatment", "Recovery Duration"],
["Mild", "Rest, pain relievers, follow-up X-ray", "4-6 weeks"],
["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
]
# Cost & duration estimation
cost_duration_data = [
["Hospital Type", "Estimated Cost", "Recovery Time"],
["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
]
# Save resized X-ray image
img = Image.open(xray).resize((300, 300))
img_path = f"{name}_xray.png"
img.save(img_path)
# Generate PDF report
report_path = f"{name}_fracture_report.pdf"
c = canvas.Canvas(report_path, pagesize=letter)
# Report title
c.setFont("Helvetica-Bold", 16)
c.drawCentredString(300, 770, "Bone Fracture Detection Report")
# Patient details
patient_data = [
["Patient Name", name],
["Age", age],
["Gender", gender],
["Weight", f"{weight} kg"],
["Height", f"{height} cm"],
["Allergies", allergies if allergies else "None"],
["Cause of Injury", cause if cause else "Not Provided"],
["Diagnosis", diagnosed_class],
["Injury Severity", severity]
]
# Format and align tables
def format_table(data):
table = Table(data, colWidths=[270, 270]) # 90% width
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
]))
return table
# Draw patient details table
patient_table = format_table(patient_data)
patient_table.wrapOn(c, 480, 500)
patient_table.drawOn(c, 50, 620)
# Center X-ray image
c.drawInlineImage(img_path, 150, 320, width=300, height=300)
c.setFont("Helvetica-Bold", 12)
c.drawCentredString(300, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
# Draw treatment & cost tables
treatment_table = format_table(treatment_data)
treatment_table.wrapOn(c, 480, 200)
treatment_table.drawOn(c, 50, 200)
cost_table = format_table(cost_duration_data)
cost_table.wrapOn(c, 480, 150)
cost_table.drawOn(c, 50, 80)
c.save()
# Send email
email_status = send_email(email, report_path)
return report_path, email_status
# Function to select a sample image
def use_sample_image(sample_image_path):
return sample_image_path
# Define Gradio Interface
with gr.Blocks() as app:
gr.HTML(html_content)
gr.Markdown("## Bone Fracture Detection System")
with gr.Row():
name = gr.Textbox(label="Patient Name", max_length=50)
age = gr.Number(label="Age")
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
with gr.Row():
weight = gr.Number(label="Weight (kg)")
height = gr.Number(label="Height (cm)")
with gr.Row():
allergies = gr.Textbox(label="Allergies (if any)")
cause = gr.Textbox(label="Cause of Injury", max_lines=5)
with gr.Row():
email = gr.Textbox(label="Email Address")
with gr.Row():
xray = gr.Image(type="filepath", label="Upload X-ray Image")
with gr.Row():
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
select_button = gr.Button("Load Sample Image")
submit_button = gr.Button("Generate Report")
output_file = gr.File(label="Download Report")
email_status = gr.Textbox(label="Email Status", interactive=False)
select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])
submit_button.click(
generate_report,
inputs=[name, age, gender, weight, height, allergies, cause, xray, email],
outputs=[output_file, email_status],
)
# Launch the Gradio app
if __name__ == "__main__":
app.launch() |