File size: 5,851 Bytes
75ae599 f494b68 12a86ab c6b4946 f494b68 12a86ab f494b68 11dec21 cabae73 8e50f32 12a86ab 03486e0 75ae599 12a86ab 8e50f32 1bf15a1 12a86ab 8e50f32 cabae73 819753a c6b4946 8e50f32 12a86ab 819753a c6b4946 8e50f32 c6b4946 819753a c6b4946 8e50f32 c6b4946 819753a c6b4946 12a86ab cabae73 12a86ab 11dec21 8e50f32 c6b4946 11dec21 8e50f32 cabae73 11dec21 cabae73 11dec21 8e50f32 11dec21 12a86ab 11dec21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Force TensorFlow to use CPU
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
from reportlab.platypus import Table, TableStyle
# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")
# Read HTML content from `re.html`
with open("templates/re.html", "r", encoding="utf-8") as file:
html_content = file.read()
# List of sample images
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
# Function to process X-ray and generate a PDF report
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
image_size = (224, 224)
def predict_fracture(xray_path):
img = Image.open(xray_path).resize(image_size)
img_array = image.img_to_array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
prediction = model.predict(img_array)[0][0]
return prediction
# Predict fracture
prediction = predict_fracture(xray)
diagnosed_class = "normal" if prediction > 0.5 else "Fractured"
# Injury severity classification
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
# Treatment details table
treatment_data = [
["Severity Level", "Recommended Treatment", "Recovery Duration"],
["Mild", "Rest, pain relievers, and follow-up X-ray", "4-6 weeks"],
["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
]
# Estimated cost & duration table
cost_duration_data = [
["Hospital Type", "Estimated Cost", "Recovery Time"],
["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
]
# Save X-ray image for report
img = Image.open(xray).resize((300, 300))
img_path = f"{name}_xray.png"
img.save(img_path)
# Generate PDF report
report_path = f"{name}_fracture_report.pdf"
c = canvas.Canvas(report_path, pagesize=letter)
# Report title
c.setFont("Helvetica-Bold", 16)
c.drawString(200, 770, "Bone Fracture Detection Report")
# Patient details table
patient_data = [
["Patient Name", name],
["Age", age],
["Gender", gender],
["Weight", f"{weight} kg"],
["Height", f"{height} cm"],
["Allergies", allergies if allergies else "None"],
["Cause of Injury", cause if cause else "Not Provided"],
["Diagnosis", diagnosed_class],
["Injury Severity", severity]
]
# Format and align tables
def format_table(data):
table = Table(data, colWidths=[270, 270]) # Set 90% width
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
]))
return table
# Draw patient details table
patient_table = format_table(patient_data)
patient_table.wrapOn(c, 480, 500)
patient_table.drawOn(c, 50, 620)
# Load and insert X-ray image
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
c.setFont("Helvetica-Bold", 12)
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
# Draw treatment and cost tables
treatment_table = format_table(treatment_data)
treatment_table.wrapOn(c, 480, 200)
treatment_table.drawOn(c, 50, 200)
cost_table = format_table(cost_duration_data)
cost_table.wrapOn(c, 480, 150)
cost_table.drawOn(c, 50, 80)
c.save()
return report_path # Return path for auto-download
# Function to select a sample image
def use_sample_image(sample_image_path):
return sample_image_path # Returns selected sample image filepath
# Define Gradio Interface
with gr.Blocks() as app:
gr.HTML(html_content) # Display `re.html` content in Gradio
gr.Markdown("## Bone Fracture Detection System")
with gr.Row():
name = gr.Textbox(label="Patient Name")
age = gr.Number(label="Age")
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
with gr.Row():
weight = gr.Number(label="Weight (kg)")
height = gr.Number(label="Height (cm)")
with gr.Row():
allergies = gr.Textbox(label="Allergies (if any)")
cause = gr.Textbox(label="Cause of Injury")
with gr.Row():
xray = gr.Image(type="filepath", label="Upload X-ray Image")
with gr.Row():
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
select_button = gr.Button("Load Sample Image")
submit_button = gr.Button("Generate Report")
output_file = gr.File(label="Download Report")
select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])
submit_button.click(
generate_report,
inputs=[name, age, gender, weight, height, allergies, cause, xray],
outputs=[output_file],
)
# Launch the Gradio app
if __name__ == "__main__":
app.launch() |