File size: 4,016 Bytes
4fdd879 695363c f3dbd83 17e63c4 64c5ee5 17e63c4 695363c 4fdd879 2e7c89d 4fdd879 695363c 176d12a 4fdd879 17e63c4 4fdd879 dec020e 4fdd879 1011232 4fdd879 1011232 4fdd879 17e63c4 4fdd879 1011232 4fdd879 695363c 4fdd879 17e63c4 4fdd879 695363c 4fdd879 695363c 1011232 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import subprocess
import pkg_resources
import sys
# Atualiza o Gradio silenciosamente antes de importar
try:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--upgrade', 'gradio'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
except:
pass
import gradio as gr
import rdflib
import requests
import matplotlib.pyplot as plt
import networkx as nx
from io import BytesIO
import base64
# Função para carregar e extrair os nomes do arquivo JSON-LD a partir de uma URL
def load_names_from_url(jsonld_url):
response = requests.get(jsonld_url)
data = response.json()
names = []
for item in data:
if 'name' in item:
names.append(item['name'])
return names
# Carregar nomes do arquivo JSON-LD
jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld'
names = load_names_from_url(jsonld_url)
def build_graph_from_jsonld(jsonld_url, selected_name):
response = requests.get(jsonld_url)
data = response.json()
# Filtrar o local selecionado
selected_data = next((item for item in data if item['name'] == selected_name), None)
if not selected_data:
return "Local não encontrado."
G = nx.DiGraph()
# Adicionar nó do Place
place_id = selected_data['@id']
place_label = f"schema:Place\nName: {selected_data['name']}\nDescription: {selected_data['description'][:30]}..."
G.add_node(place_id, label=place_label)
# Adicionar nó de GeoCoordinates
geo_data = selected_data['geo']
geo_id = geo_data['@id']
geo_label = f"geo:SpatialThing\nLat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nFeatureCodeName: {geo_data['gn:featureCodeName']}\nName: {geo_data['gn:name']}"
G.add_node(geo_id, label=geo_label)
G.add_edge(place_id, geo_id, label="schema:geo")
# Adicionar nós de CreativeWork
for work in selected_data.get('subjectOf', []):
work_id = work['@id']
work_label = f"schema:CreativeWork\nHeadline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:30]}...\nLanguage: {work['inLanguage']}"
G.add_node(work_id, label=work_label)
G.add_edge(place_id, work_id, label="schema:subjectOf")
return G
def run_query_and_visualize(selected_location, jsonld_url):
G = build_graph_from_jsonld(jsonld_url, selected_location)
if isinstance(G, str): # Caso de erro
return G
# Define posições específicas para os nós importantes
pos = nx.spring_layout(G)
# Desenha o gráfico usando NetworkX e Matplotlib
plt.figure(figsize=(15, 10))
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9)
nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray')
nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black")
nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red")
plt.title("Resultado da Consulta", size=15)
plt.axis('off')
# Salva o gráfico em um arquivo
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode()
graph_html = f'<img src="data:image/png;base64,{img_str}"/>'
plt.close()
print("Gráfico gerado com sucesso.")
return graph_html
with gr.Blocks() as demo:
gr.Markdown("# Visualização de Query SPARQL")
with gr.Column():
selected_location = gr.Dropdown(choices=names, label="Selecione o Local")
run_button = gr.Button("Visualizar Grafo")
graph_output = gr.HTML()
def on_run_button_click(selected_location):
return run_query_and_visualize(selected_location, jsonld_url)
run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output)
if __name__ == "__main__":
demo.launch() |