File size: 36,212 Bytes
5263bd3
 
f5ea8d6
5263bd3
f1d4be6
5263bd3
4a7c026
910c6c2
6be7ede
de0719b
77621ec
50ef7f7
 
 
a6886ca
962ae70
de0719b
962ae70
 
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0719b
5263bd3
 
b5edb58
962ae70
de0719b
962ae70
 
de0719b
870813f
 
 
f1d4be6
870813f
77621ec
870813f
 
 
 
 
 
de0719b
870813f
 
 
 
a6886ca
 
 
 
 
 
de0719b
a6886ca
 
 
77621ec
de0719b
6be7ede
962ae70
de0719b
962ae70
 
de0719b
f1d4be6
 
ef80028
7e92f7c
77621ec
ef80028
7e92f7c
ef80028
de0719b
962ae70
7e92f7c
 
455bf4d
77621ec
 
ef80028
a6886ca
de0719b
 
 
 
 
962ae70
 
 
 
 
 
 
 
de0719b
77621ec
 
962ae70
 
 
 
de0719b
 
 
 
 
 
77621ec
de0719b
77621ec
de0719b
 
 
 
 
 
 
 
77621ec
 
 
 
de0719b
552aec4
 
de0719b
d76e76a
 
de0719b
 
 
 
 
 
 
 
 
77621ec
 
de0719b
 
 
 
 
 
 
 
 
 
 
 
 
 
77621ec
 
 
 
 
 
de0719b
2e254a9
 
77621ec
962ae70
 
de0719b
 
 
 
 
 
 
 
 
 
 
 
 
6d0235b
 
de0719b
 
 
 
 
 
 
 
 
f1d4be6
 
de0719b
77621ec
de0719b
 
 
962ae70
f5ea8d6
962ae70
 
f5ea8d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82425ee
f5ea8d6
 
 
 
82425ee
f5ea8d6
 
 
 
 
 
 
 
 
 
 
 
77621ec
 
f5ea8d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77621ec
f5ea8d6
 
455bf4d
 
f5ea8d6
455bf4d
56468ea
de0719b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77621ec
de0719b
 
 
 
 
77621ec
 
 
 
88b80ae
 
 
 
 
e502db5
 
 
 
1869cbd
37ce441
1869cbd
37ce441
e502db5
1869cbd
8ef755b
1869cbd
8ef755b
1869cbd
1b8562c
1869cbd
e502db5
1869cbd
 
e502db5
1869cbd
1b8562c
1869cbd
 
 
8ef755b
 
1869cbd
 
 
e502db5
 
88b80ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c4adfb
87c2305
6c4adfb
88b80ae
87c2305
6c4adfb
 
88b80ae
 
87c2305
6c4adfb
 
87c2305
88b80ae
6c4adfb
88b80ae
6c4adfb
88b80ae
6c4adfb
 
 
 
 
 
 
 
 
 
 
 
87c2305
6c4adfb
 
 
 
77621ec
6c4adfb
87c2305
88b80ae
87c2305
6c4adfb
 
87c2305
88b80ae
 
6c4adfb
 
 
 
87c2305
6c4adfb
 
87c2305
6c4adfb
 
 
 
87c2305
6c4adfb
 
88b80ae
 
6c4adfb
 
 
88b80ae
6c4adfb
88b80ae
6c4adfb
 
 
 
 
 
 
 
88b80ae
6c4adfb
 
 
 
 
 
 
 
77621ec
 
87c2305
88b80ae
87c2305
5a41c75
88b80ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fd86ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b80ae
de0719b
2fd86ff
de0719b
 
 
 
 
 
2fd86ff
 
 
de0719b
 
 
 
d153967
de0719b
2fd86ff
 
 
de0719b
 
 
 
 
 
 
77621ec
 
 
 
de0719b
 
77621ec
de0719b
 
2fd86ff
de0719b
 
 
 
f5ea8d6
2fd86ff
de0719b
77621ec
de0719b
56468ea
de0719b
77621ec
2fd86ff
56468ea
de0719b
 
 
 
77621ec
de0719b
 
 
2fd86ff
de0719b
 
 
2fd86ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0719b
82425ee
2fd86ff
77621ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fd86ff
77621ec
 
 
2fd86ff
77621ec
 
de0719b
 
2fd86ff
 
de0719b
2fd86ff
 
 
 
 
 
 
77621ec
 
2fd86ff
77621ec
2fd86ff
 
 
de0719b
0d2d632
723da6d
2fd86ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import io
from PIL import Image
from scipy.interpolate import interp1d
from Bio.Graphics import GenomeDiagram
from Bio.SeqFeature import SeqFeature, FeatureLocation
from reportlab.lib import colors

###############################################################################
# 1. MODEL DEFINITION
###############################################################################

class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )

    def forward(self, x):
        return self.network(x)

###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################

def parse_fasta(text):
    sequences = []
    current_header = None
    current_sequence = []
    for line in text.strip().split('\n'):
        line = line.strip()
        if not line: continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
    return sequences

def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    vec = np.zeros(len(kmers), dtype=np.float32)
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            vec[kmer_dict[kmer]] += 1
    total_kmers = len(sequence) - k + 1
    if total_kmers > 0:
        vec /= total_kmers
    return vec

###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################

def calculate_shap_values(model, x_tensor):
    model.eval()
    with torch.no_grad():
        baseline_output = model(x_tensor)
        baseline_probs = torch.softmax(baseline_output, dim=1)
        baseline_prob = baseline_probs[0, 1].item()  # Prob of 'human'
        shap_values = []
        x_zeroed = x_tensor.clone()
        for i in range(x_tensor.shape[1]):
            original_val = x_zeroed[0, i].item()
            x_zeroed[0, i] = 0.0
            output = model(x_zeroed)
            probs = torch.softmax(output, dim=1)
            prob = probs[0, 1].item()
            shap_values.append(baseline_prob - prob)
            x_zeroed[0, i] = original_val
    return np.array(shap_values), baseline_prob

###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################

def compute_positionwise_scores(sequence, shap_values, k=4):
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    seq_len = len(sequence)
    shap_sums = np.zeros(seq_len, dtype=np.float32)
    coverage = np.zeros(seq_len, dtype=np.float32)
    for i in range(seq_len - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            val = shap_values[kmer_dict[kmer]]
            shap_sums[i:i+k] += val
            coverage[i:i+k] += 1
    with np.errstate(divide='ignore', invalid='ignore'):
        shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
    return shap_means

###############################################################################
# 5. FIND EXTREME SHAP REGIONS
###############################################################################

def find_extreme_subregion(shap_means, window_size=500, mode="max"):
    n = len(shap_means)
    if n == 0: return (0, 0, 0.0)
    if window_size >= n:
        return (0, n, float(np.mean(shap_means)))
    csum = np.zeros(n + 1, dtype=np.float32)
    csum[1:] = np.cumsum(shap_means)
    best_start = 0
    best_sum = csum[window_size] - csum[0]
    best_avg = best_sum / window_size
    for start in range(1, n - window_size + 1):
        wsum = csum[start + window_size] - csum[start]
        wavg = wsum / window_size
        if mode == "max" and wavg > best_avg:
            best_avg = wavg; best_start = start
        elif mode == "min" and wavg < best_avg:
            best_avg = wavg; best_start = start
    return (best_start, best_start + window_size, float(best_avg))

###############################################################################
# 6. PLOTTING / UTILITIES
###############################################################################

def fig_to_image(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
    buf.seek(0)
    img = Image.open(buf)
    plt.close(fig)
    return img

def get_zero_centered_cmap():
    colors = [(0.0, 'blue'), (0.5, 'white'), (1.0, 'red')]
    return mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors)

def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap", start=None, end=None):
    if start is not None and end is not None:
        local_shap = shap_means[start:end]
        subtitle = f" (positions {start}-{end})"
    else:
        local_shap = shap_means
        subtitle = ""
    if len(local_shap) == 0:
        local_shap = np.array([0.0])
    heatmap_data = local_shap.reshape(1, -1)
    min_val = np.min(local_shap)
    max_val = np.max(local_shap)
    extent = max(abs(min_val), abs(max_val))
    cmap = get_zero_centered_cmap()
    fig, ax = plt.subplots(figsize=(12, 1.8))
    cax = ax.imshow(heatmap_data, aspect='auto', cmap=cmap, vmin=-extent, vmax=extent)
    cbar = plt.colorbar(cax, orientation='horizontal', pad=0.25, aspect=40, shrink=0.8)
    cbar.ax.tick_params(labelsize=8)
    cbar.set_label('SHAP Contribution', fontsize=9, labelpad=5)
    ax.set_yticks([])
    ax.set_xlabel('Position in Sequence', fontsize=10)
    ax.set_title(f"{title}{subtitle}", pad=10)
    plt.subplots_adjust(bottom=0.25, left=0.05, right=0.95)
    return fig

def create_importance_bar_plot(shap_values, kmers, top_k=10):
    plt.rcParams.update({'font.size': 10})
    fig = plt.figure(figsize=(10, 5))
    indices = np.argsort(np.abs(shap_values))[-top_k:]
    values = shap_values[indices]
    features = [kmers[i] for i in indices]
    colors = ['#99ccff' if v < 0 else '#ff9999' for v in values]
    plt.barh(range(len(values)), values, color=colors)
    plt.yticks(range(len(values)), features)
    plt.xlabel('SHAP Value (impact on model output)')
    plt.title(f'Top {top_k} Most Influential k-mers')
    plt.gca().invert_yaxis()
    plt.tight_layout()
    return fig

def plot_shap_histogram(shap_array, title="SHAP Distribution in Region"):
    fig, ax = plt.subplots(figsize=(6, 4))
    ax.hist(shap_array, bins=30, color='gray', edgecolor='black')
    ax.axvline(0, color='red', linestyle='--', label='0.0')
    ax.set_xlabel("SHAP Value")
    ax.set_ylabel("Count")
    ax.set_title(title)
    ax.legend()
    plt.tight_layout()
    return fig

def compute_gc_content(sequence):
    if not sequence: return 0
    gc_count = sequence.count('G') + sequence.count('C')
    return (gc_count / len(sequence)) * 100.0

###############################################################################
# 7. MAIN ANALYSIS STEP (Gradio Step 1)
###############################################################################

def analyze_sequence(file_obj, top_kmers=10, fasta_text="", window_size=500):
    if fasta_text.strip():
        text = fasta_text.strip()
    elif file_obj is not None:
        try:
            with open(file_obj, 'r') as f:
                text = f.read()
        except Exception as e:
            return (f"Error reading file: {str(e)}", None, None, None, None)
    else:
        return ("Please provide a FASTA sequence.", None, None, None, None)

    sequences = parse_fasta(text)
    if not sequences:
        return ("No valid FASTA sequences found.", None, None, None, None)
    header, seq = sequences[0]

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    try:
        state_dict = torch.load('model.pt', map_location=device, weights_only=True)
        model = VirusClassifier(256).to(device)
        model.load_state_dict(state_dict)
        scaler = joblib.load('scaler.pkl')
    except Exception as e:
        return (f"Error loading model/scaler: {str(e)}", None, None, None, None)

    freq_vector = sequence_to_kmer_vector(seq)
    scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
    x_tensor = torch.FloatTensor(scaled_vector).to(device)

    shap_values, prob_human = calculate_shap_values(model, x_tensor)
    prob_nonhuman = 1.0 - prob_human
    classification = "Human" if prob_human > 0.5 else "Non-human"
    confidence = max(prob_human, prob_nonhuman)

    shap_means = compute_positionwise_scores(seq, shap_values, k=4)
    max_start, max_end, max_avg = find_extreme_subregion(shap_means, window_size, mode="max")
    min_start, min_end, min_avg = find_extreme_subregion(shap_means, window_size, mode="min")

    results_text = (
        f"Sequence: {header}\n"
        f"Length: {len(seq):,} bases\n"
        f"Classification: {classification}\n"
        f"Confidence: {confidence:.3f}\n"
        f"(Human Probability: {prob_human:.3f}, Non-human Probability: {prob_nonhuman:.3f})\n\n"
        f"---\n"
        f"**Most Human-Pushing {window_size}-bp Subregion**:\n"
        f"Start: {max_start}, End: {max_end}, Avg SHAP: {max_avg:.4f}\n\n"
        f"**Most Non-Human–Pushing {window_size}-bp Subregion**:\n"
        f"Start: {min_start}, End: {min_end}, Avg SHAP: {min_avg:.4f}"
    )

    kmers = [''.join(p) for p in product("ACGT", repeat=4)]
    bar_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
    bar_img = fig_to_image(bar_fig)

    heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide SHAP")
    heatmap_img = fig_to_image(heatmap_fig)

    state_dict_out = {"seq": seq, "shap_means": shap_means}

    return (results_text, bar_img, heatmap_img, state_dict_out, header)

###############################################################################
# 8. SUBREGION ANALYSIS (Gradio Step 2)
###############################################################################

def analyze_subregion(state, header, region_start, region_end):
    if not state or "seq" not in state or "shap_means" not in state:
        return ("No sequence data found. Please run Step 1 first.", None, None)
    seq = state["seq"]
    shap_means = state["shap_means"]
    region_start = int(region_start)
    region_end = int(region_end)
    region_start = max(0, min(region_start, len(seq)))
    region_end = max(0, min(region_end, len(seq)))
    if region_end <= region_start:
        return ("Invalid region range. End must be > Start.", None, None)
    region_seq = seq[region_start:region_end]
    region_shap = shap_means[region_start:region_end]
    gc_percent = compute_gc_content(region_seq)
    avg_shap = float(np.mean(region_shap))
    positive_fraction = np.mean(region_shap > 0)
    negative_fraction = np.mean(region_shap < 0)
    if avg_shap > 0.05:
        region_classification = "Likely pushing toward human"
    elif avg_shap < -0.05:
        region_classification = "Likely pushing toward non-human"
    else:
        region_classification = "Near neutral (no strong push)"
    region_info = (
        f"Analyzing subregion of {header} from {region_start} to {region_end}\n"
        f"Region length: {len(region_seq)} bases\n"
        f"GC content: {gc_percent:.2f}%\n"
        f"Average SHAP in region: {avg_shap:.4f}\n"
        f"Fraction with SHAP > 0 (toward human): {positive_fraction:.2f}\n"
        f"Fraction with SHAP < 0 (toward non-human): {negative_fraction:.2f}\n"
        f"Subregion interpretation: {region_classification}\n"
    )
    heatmap_fig = plot_linear_heatmap(shap_means, title="Subregion SHAP", start=region_start, end=region_end)
    heatmap_img = fig_to_image(heatmap_fig)
    hist_fig = plot_shap_histogram(region_shap, title="SHAP Distribution in Subregion")
    hist_img = fig_to_image(hist_fig)
    return (region_info, heatmap_img, hist_img)

###############################################################################
# 9. COMPARISON ANALYSIS FUNCTIONS
###############################################################################

def get_zero_centered_cmap():
    """Create a zero-centered blue-white-red colormap"""
    colors = [(0.0, 'blue'), (0.5, 'white'), (1.0, 'red')]
    return mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors)

def compute_shap_difference(shap1_norm, shap2_norm):
    """Compute the SHAP difference between normalized sequences"""
    return shap2_norm - shap1_norm

def plot_comparative_heatmap(shap_diff, title="SHAP Difference Heatmap"):
    """
    Plot heatmap using relative positions (0-100%)
    """
    heatmap_data = shap_diff.reshape(1, -1)
    extent = max(abs(np.min(shap_diff)), abs(np.max(shap_diff)))
    
    fig, ax = plt.subplots(figsize=(12, 1.8))
    cmap = get_zero_centered_cmap()
    cax = ax.imshow(heatmap_data, aspect='auto', cmap=cmap, vmin=-extent, vmax=extent)
    
    # Create percentage-based x-axis ticks
    num_ticks = 5
    tick_positions = np.linspace(0, shap_diff.shape[0]-1, num_ticks)
    tick_labels = [f"{int(x*100)}%" for x in np.linspace(0, 1, num_ticks)]
    ax.set_xticks(tick_positions)
    ax.set_xticklabels(tick_labels)
    
    cbar = plt.colorbar(cax, orientation='horizontal', pad=0.25, aspect=40, shrink=0.8)
    cbar.ax.tick_params(labelsize=8)
    cbar.set_label('SHAP Difference (Seq2 - Seq1)', fontsize=9, labelpad=5)
    
    ax.set_yticks([])
    ax.set_xlabel('Relative Position in Sequence', fontsize=10)
    ax.set_title(title, pad=10)
    plt.subplots_adjust(bottom=0.25, left=0.05, right=0.95)
    
    return fig

def plot_shap_histogram(shap_array, title="SHAP Distribution", num_bins=30):
    """
    Plot histogram of SHAP values with configurable number of bins
    """
    fig, ax = plt.subplots(figsize=(6, 4))
    ax.hist(shap_array, bins=num_bins, color='gray', edgecolor='black', alpha=0.7)
    ax.axvline(0, color='red', linestyle='--', label='0.0')
    ax.set_xlabel("SHAP Value")
    ax.set_ylabel("Count")
    ax.set_title(title)
    ax.legend()
    plt.tight_layout()
    return fig

def calculate_adaptive_parameters(len1, len2):
    """
    Calculate adaptive parameters based on sequence lengths and their difference.
    Returns: (num_points, smooth_window, resolution_factor)
    """
    length_diff = abs(len1 - len2)
    max_length = max(len1, len2)
    min_length = min(len1, len2)
    length_ratio = min_length / max_length
    
    # Base number of points scales with sequence length
    base_points = min(2000, max(500, max_length // 100))
    
    # Adjust parameters based on sequence properties
    if length_diff < 500:
        resolution_factor = 2.0
        num_points = min(3000, base_points * 2)
        smooth_window = max(10, length_diff // 50)
    elif length_diff < 5000:
        resolution_factor = 1.5
        num_points = min(2000, base_points * 1.5)
        smooth_window = max(20, length_diff // 100)
    elif length_diff < 50000:
        resolution_factor = 1.0
        num_points = base_points
        smooth_window = max(50, length_diff // 200)
    else:
        resolution_factor = 0.75
        num_points = max(500, base_points // 2)
        smooth_window = max(100, length_diff // 500)
    
    # Adjust window size based on length ratio
    smooth_window = int(smooth_window * (1 + (1 - length_ratio)))
    
    return int(num_points), int(smooth_window), resolution_factor

def sliding_window_smooth(values, window_size=50):
    """
    Apply sliding window smoothing with edge handling
    """
    if window_size < 3:
        return values
    
    # Create window with exponential decay at edges
    window = np.ones(window_size)
    decay = np.exp(-np.linspace(0, 3, window_size // 2))
    window[:window_size // 2] = decay
    window[-(window_size // 2):] = decay[::-1]
    window = window / window.sum()
    
    # Apply convolution
    smoothed = np.convolve(values, window, mode='valid')
    
    # Handle edges
    pad_size = len(values) - len(smoothed)
    pad_left = pad_size // 2
    pad_right = pad_size - pad_left
    
    result = np.zeros_like(values)
    result[pad_left:-pad_right] = smoothed
    result[:pad_left] = values[:pad_left]
    result[-pad_right:] = values[-pad_right:]
    
    return result

def normalize_shap_lengths(shap1, shap2):
    """
    Normalize and smooth SHAP values with dynamic adaptation
    """
    # Calculate adaptive parameters
    num_points, smooth_window, _ = calculate_adaptive_parameters(len(shap1), len(shap2))
    
    # Apply initial smoothing
    shap1_smooth = sliding_window_smooth(shap1, smooth_window)
    shap2_smooth = sliding_window_smooth(shap2, smooth_window)
    
    # Create relative positions and interpolate
    x1 = np.linspace(0, 1, len(shap1_smooth))
    x2 = np.linspace(0, 1, len(shap2_smooth))
    x_norm = np.linspace(0, 1, num_points)
    
    shap1_interp = np.interp(x_norm, x1, shap1_smooth)
    shap2_interp = np.interp(x_norm, x2, shap2_smooth)
    
    return shap1_interp, shap2_interp, smooth_window

def analyze_sequence_comparison(file1, file2, fasta1="", fasta2=""):
    """
    Compare two sequences with adaptive parameters and visualization
    """
    try:
        # Analyze first sequence
        res1 = analyze_sequence(file1, top_kmers=10, fasta_text=fasta1, window_size=500)
        if isinstance(res1[0], str) and "Error" in res1[0]:
            return (f"Error in sequence 1: {res1[0]}", None, None)
        
        # Analyze second sequence
        res2 = analyze_sequence(file2, top_kmers=10, fasta_text=fasta2, window_size=500)
        if isinstance(res2[0], str) and "Error" in res2[0]:
            return (f"Error in sequence 2: {res2[0]}", None, None)

        # Extract SHAP values and sequence info
        shap1 = res1[3]["shap_means"]
        shap2 = res2[3]["shap_means"]
        
        # Calculate sequence properties
        len1, len2 = len(shap1), len(shap2)
        length_diff = abs(len1 - len2)
        length_ratio = min(len1, len2) / max(len1, len2)
        
        # Normalize and compare sequences
        shap1_norm, shap2_norm, smooth_window = normalize_shap_lengths(shap1, shap2)
        shap_diff = compute_shap_difference(shap1_norm, shap2_norm)
        
        # Calculate adaptive threshold and statistics
        base_threshold = 0.05
        adaptive_threshold = base_threshold * (1 + (1 - length_ratio))
        if length_diff > 50000:
            adaptive_threshold *= 1.5
        
        # Calculate comparison statistics
        avg_diff = np.mean(shap_diff)
        std_diff = np.std(shap_diff)
        max_diff = np.max(shap_diff)
        min_diff = np.min(shap_diff)
        substantial_diffs = np.abs(shap_diff) > adaptive_threshold
        frac_different = np.mean(substantial_diffs)

        # Extract classifications
        try:
            classification1 = res1[0].split('Classification: ')[1].split('\n')[0].strip()
            classification2 = res2[0].split('Classification: ')[1].split('\n')[0].strip()
        except:
            classification1 = "Unknown"
            classification2 = "Unknown"
        
        # Format output text
        comparison_text = (
            "Sequence Comparison Results:\n"
            f"Sequence 1: {res1[4]}\n"
            f"Length: {len1:,} bases\n"
            f"Classification: {classification1}\n\n"
            f"Sequence 2: {res2[4]}\n"
            f"Length: {len2:,} bases\n"
            f"Classification: {classification2}\n\n"
            "Comparison Parameters:\n"
            f"Length Difference: {length_diff:,} bases\n"
            f"Length Ratio: {length_ratio:.3f}\n"
            f"Smoothing Window: {smooth_window} points\n"
            f"Adaptive Threshold: {adaptive_threshold:.3f}\n\n"
            "Statistics:\n"
            f"Average SHAP difference: {avg_diff:.4f}\n"
            f"Standard deviation: {std_diff:.4f}\n"
            f"Max difference: {max_diff:.4f} (Seq2 more human-like)\n"
            f"Min difference: {min_diff:.4f} (Seq1 more human-like)\n"
            f"Fraction with substantial differences: {frac_different:.2%}\n\n"
            "Note: All parameters automatically adjusted based on sequence properties\n\n"
            "Interpretation:\n"
            "- Red regions: Sequence 2 more human-like\n"
            "- Blue regions: Sequence 1 more human-like\n"
            "- White regions: Similar between sequences"
        )
        
        # Generate visualizations
        heatmap_fig = plot_comparative_heatmap(
            shap_diff,
            title=f"SHAP Difference Heatmap (window: {smooth_window})"
        )
        heatmap_img = fig_to_image(heatmap_fig)
        
        # Create histogram with adaptive bins
        num_bins = max(20, min(50, int(np.sqrt(len(shap_diff)))))
        hist_fig = plot_shap_histogram(
            shap_diff,
            title="Distribution of SHAP Differences",
            num_bins=num_bins
        )
        hist_img = fig_to_image(hist_fig)
        
        return comparison_text, heatmap_img, hist_img
        
    except Exception as e:
        error_msg = f"Error during sequence comparison: {str(e)}"
        return error_msg, None, None

###############################################################################
# 11. GENE FEATURE ANALYSIS
###############################################################################

def parse_gene_features(text):
    """Parse gene features from text file in FASTA-like format"""
    genes = []
    current_header = None
    current_sequence = []
    
    for line in text.strip().split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                genes.append({
                    'header': current_header,
                    'sequence': ''.join(current_sequence),
                    'metadata': parse_gene_metadata(current_header)
                })
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
            
    if current_header:
        genes.append({
            'header': current_header,
            'sequence': ''.join(current_sequence),
            'metadata': parse_gene_metadata(current_header)
        })
    
    return genes

def parse_gene_metadata(header):
    """Extract metadata from gene header"""
    metadata = {}
    parts = header.split()
    
    for part in parts:
        if '[' in part and ']' in part:
            key_value = part[1:-1].split('=', 1)
            if len(key_value) == 2:
                metadata[key_value[0]] = key_value[1]
                
    return metadata

def analyze_gene_features(sequence_file, features_file, fasta_text="", features_text=""):
    """Analyze SHAP values for each gene feature"""
    # First analyze whole sequence
    sequence_results = analyze_sequence(sequence_file, top_kmers=10, fasta_text=fasta_text)
    if isinstance(sequence_results[0], str) and "Error" in sequence_results[0]:
        return f"Error in sequence analysis: {sequence_results[0]}", None, None
        
    # Get SHAP values
    shap_means = sequence_results[3]["shap_means"]
    
    # Parse gene features
    if features_text.strip():
        genes = parse_gene_features(features_text)
    else:
        try:
            with open(features_file, 'r') as f:
                genes = parse_gene_features(f.read())
        except Exception as e:
            return f"Error reading features file: {str(e)}", None, None
            
    # Analyze each gene
    gene_results = []
    for gene in genes:
        try:
            location = gene['metadata'].get('location', '')
            if not location:
                continue
                
            # Parse location (assuming format like "21729..22861")
            start, end = map(int, location.split('..'))
            
            # Get SHAP values for this region
            gene_shap = shap_means[start:end]
            avg_shap = float(np.mean(gene_shap))
            
            gene_results.append({
                'gene_name': gene['metadata'].get('gene', 'Unknown'),
                'location': location,
                'avg_shap': avg_shap,
                'start': start,
                'end': end,
                'locus_tag': gene['metadata'].get('locus_tag', ''),
                'classification': 'Human' if avg_shap > 0 else 'Non-human',
                'confidence': abs(avg_shap)
            })
            
        except Exception as e:
            print(f"Error processing gene {gene['metadata'].get('gene', 'Unknown')}: {str(e)}")
            continue
            
    # Create CSV output
    csv_output = "gene_name,location,avg_shap,classification,confidence,locus_tag\n"
    for result in gene_results:
        csv_output += f"{result['gene_name']},{result['location']},{result['avg_shap']:.4f},"
        csv_output += f"{result['classification']},{result['confidence']:.4f},{result['locus_tag']}\n"
        
    # Create genome diagram
    diagram_img = create_genome_diagram(gene_results, len(shap_means))
    
    return gene_results, csv_output, diagram_img

def create_genome_diagram(gene_results, genome_length):
    """Create genome diagram using BioPython"""
    
    # Create diagram
    gd_diagram = GenomeDiagram.Diagram("Genome SHAP Analysis")
    gd_track = gd_diagram.new_track(1, name="Genes")
    gd_feature_set = gd_track.new_set()
    
    # Add features
    for gene in gene_results:
        # Create feature
        feature = SeqFeature(
            FeatureLocation(gene['start'], gene['end']),
            type="gene"
        )
        
        # Calculate color based on SHAP value
        if gene['avg_shap'] > 0:
            intensity = min(1.0, abs(gene['avg_shap']) * 2)
            color = colors.Color(1-intensity, 1-intensity, 1)  # Red
        else:
            intensity = min(1.0, abs(gene['avg_shap']) * 2)
            color = colors.Color(1-intensity, 1-intensity, 1)  # Blue
            
        # Add to diagram
        gd_feature_set.add_feature(
            feature,
            color=color,
            label=True,
            name=f"{gene['gene_name']}\n(SHAP: {gene['avg_shap']:.3f})"
        )
        
    # Draw diagram
    gd_diagram.draw(
        format="linear",
        orientation="landscape",
        pagesize=(15, 5),
        start=0,
        end=genome_length,
        fragments=1
    )
    
    # Save to BytesIO and convert to PIL Image
    buffer = BytesIO()
    gd_diagram.write(buffer, "PNG")
    buffer.seek(0)
    return Image.open(buffer)

###############################################################################
# 12. DOWNLOAD FUNCTIONS
###############################################################################

def prepare_csv_download(data, filename="analysis_results.csv"):
    """Prepare CSV data for download"""
    if isinstance(data, str):
        return data.encode(), filename
    elif isinstance(data, (list, dict)):
        import csv
        from io import StringIO
        
        output = StringIO()
        writer = csv.DictWriter(output, fieldnames=data[0].keys())
        writer.writeheader()
        writer.writerows(data)
        return output.getvalue().encode(), filename
    else:
        raise ValueError("Unsupported data type for CSV download")
        
###############################################################################
# 13. BUILD GRADIO INTERFACE
###############################################################################

css = """
.gradio-container {
    font-family: 'IBM Plex Sans', sans-serif;
}
.download-button {
    margin-top: 10px;
}
"""

with gr.Blocks(css=css) as iface:
    gr.Markdown("""
    # Virus Host Classifier
    **Step 1**: Predict overall viral sequence origin (human vs non-human) and identify extreme regions.  
    **Step 2**: Explore subregions to see local SHAP signals, distribution, GC content, etc.  
    **Step 3**: Analyze gene features and their contributions.  
    **Step 4**: Compare sequences and analyze differences.
    
    **Color Scale**: Negative SHAP = Blue, Zero = White, Positive = Red.
    """)
    
    with gr.Tab("1) Full-Sequence Analysis"):
        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(label="Upload FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
                text_input = gr.Textbox(label="Or paste FASTA sequence", placeholder=">sequence_name\nACGTACGT...", lines=5)
                top_k = gr.Slider(minimum=5, maximum=30, value=10, step=1, label="Number of top k-mers to display")
                win_size = gr.Slider(minimum=100, maximum=5000, value=500, step=100, label="Window size for 'most pushing' subregions")
                analyze_btn = gr.Button("Analyze Sequence", variant="primary")
            with gr.Column(scale=2):
                results_box = gr.Textbox(label="Classification Results", lines=12, interactive=False)
                kmer_img = gr.Image(label="Top k-mer SHAP")
                genome_img = gr.Image(label="Genome-wide SHAP Heatmap (Blue=neg, White=0, Red=pos)")
                download_results = gr.File(label="Download Results", visible=False, elem_classes="download-button")
        seq_state = gr.State()
        header_state = gr.State()
        analyze_btn.click(
            analyze_sequence,
            inputs=[file_input, top_k, text_input, win_size],
            outputs=[results_box, kmer_img, genome_img, seq_state, header_state, download_results]
        )

    with gr.Tab("2) Subregion Exploration"):
        gr.Markdown("""
        **Subregion Analysis**  
        Select start/end positions to view local SHAP signals, distribution, GC content, etc.
        The heatmap uses the same Blue-White-Red scale.
        """)
        with gr.Row():
            region_start = gr.Number(label="Region Start", value=0)
            region_end = gr.Number(label="Region End", value=500)
            region_btn = gr.Button("Analyze Subregion")
        subregion_info = gr.Textbox(label="Subregion Analysis", lines=7, interactive=False)
        with gr.Row():
            subregion_img = gr.Image(label="Subregion SHAP Heatmap (B-W-R)")
            subregion_hist_img = gr.Image(label="SHAP Distribution (Histogram)")
        download_subregion = gr.File(label="Download Subregion Analysis", visible=False, elem_classes="download-button")
        region_btn.click(
            analyze_subregion,
            inputs=[seq_state, header_state, region_start, region_end],
            outputs=[subregion_info, subregion_img, subregion_hist_img, download_subregion]
        )

    with gr.Tab("3) Gene Features Analysis"):
        gr.Markdown("""
        **Analyze Gene Features**  
        Upload a FASTA file and corresponding gene features file to analyze SHAP values per gene.
        Gene features should be in the format:
        ```
        >gene_name [gene=X] [locus_tag=Y] [location=start..end]
        SEQUENCE
        ```
        The genome viewer will show genes color-coded by their contribution:
        - Red: Genes pushing toward human origin
        - Blue: Genes pushing toward non-human origin
        - Color intensity indicates strength of signal
        """)
        with gr.Row():
            with gr.Column(scale=1):
                gene_fasta_file = gr.File(label="Upload FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
                gene_fasta_text = gr.Textbox(label="Or paste FASTA sequence", placeholder=">sequence_name\nACGTACGT...", lines=5)
            with gr.Column(scale=1):
                features_file = gr.File(label="Upload gene features file", file_types=[".txt"], type="filepath")
                features_text = gr.Textbox(label="Or paste gene features", placeholder=">gene_1 [gene=U12]...\nACGT...", lines=5)
        
        analyze_genes_btn = gr.Button("Analyze Gene Features", variant="primary")
        gene_results = gr.Textbox(label="Gene Analysis Results", lines=12, interactive=False)
        gene_diagram = gr.Image(label="Genome Diagram with Gene Features")
        download_gene_results = gr.File(label="Download Gene Analysis", visible=False, elem_classes="download-button")
        
        analyze_genes_btn.click(
            analyze_gene_features,
            inputs=[gene_fasta_file, features_file, gene_fasta_text, features_text],
            outputs=[gene_results, download_gene_results, gene_diagram]
        )
    
    with gr.Tab("4) Comparative Analysis"):
        gr.Markdown("""
        **Compare Two Sequences**  
        Upload or paste two FASTA sequences to compare their SHAP patterns.
        The sequences will be normalized to the same length for comparison.
        
        **Color Scale**:  
        - Red: Sequence 2 is more human-like in this region  
        - Blue: Sequence 1 is more human-like in this region  
        - White: No substantial difference
        """)
        with gr.Row():
            with gr.Column(scale=1):
                file_input1 = gr.File(label="Upload first FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
                text_input1 = gr.Textbox(label="Or paste first FASTA sequence", placeholder=">sequence1\nACGTACGT...", lines=5)
            with gr.Column(scale=1):
                file_input2 = gr.File(label="Upload second FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
                text_input2 = gr.Textbox(label="Or paste second FASTA sequence", placeholder=">sequence2\nACGTACGT...", lines=5)
        compare_btn = gr.Button("Compare Sequences", variant="primary")
        comparison_text = gr.Textbox(label="Comparison Results", lines=12, interactive=False)
        with gr.Row():
            diff_heatmap = gr.Image(label="SHAP Difference Heatmap")
            diff_hist = gr.Image(label="Distribution of SHAP Differences")
        download_comparison = gr.File(label="Download Comparison Results", visible=False, elem_classes="download-button")
        compare_btn.click(
            analyze_sequence_comparison,
            inputs=[file_input1, file_input2, text_input1, text_input2],
            outputs=[comparison_text, diff_heatmap, diff_hist, download_comparison]
        )
    
    gr.Markdown("""
    ### Interface Features
    - **Overall Classification** (human vs non-human) using k-mer frequencies
    - **SHAP Analysis** shows which k-mers push classification toward or away from human
    - **White-Centered SHAP Gradient**: 
      - Negative (blue), 0 (white), Positive (red)
      - Symmetrical color range around 0
    - **Identify Subregions** with strongest push for human or non-human
    - **Gene Feature Analysis**:
      - Analyze individual genes' contributions
      - Interactive genome viewer
      - Gene-level statistics and classification
    - **Sequence Comparison**:
      - Compare two sequences to identify regions of difference
      - Normalized comparison to handle different lengths
      - Statistical summary of differences
    - **Data Export**:
      - Download results as CSV files
      - Save analysis outputs for further processing
    """)

if __name__ == "__main__":
    iface.launch()