Spaces:
Running
Running
File size: 36,212 Bytes
5263bd3 f5ea8d6 5263bd3 f1d4be6 5263bd3 4a7c026 910c6c2 6be7ede de0719b 77621ec 50ef7f7 a6886ca 962ae70 de0719b 962ae70 5263bd3 de0719b 5263bd3 b5edb58 962ae70 de0719b 962ae70 de0719b 870813f f1d4be6 870813f 77621ec 870813f de0719b 870813f a6886ca de0719b a6886ca 77621ec de0719b 6be7ede 962ae70 de0719b 962ae70 de0719b f1d4be6 ef80028 7e92f7c 77621ec ef80028 7e92f7c ef80028 de0719b 962ae70 7e92f7c 455bf4d 77621ec ef80028 a6886ca de0719b 962ae70 de0719b 77621ec 962ae70 de0719b 77621ec de0719b 77621ec de0719b 77621ec de0719b 552aec4 de0719b d76e76a de0719b 77621ec de0719b 77621ec de0719b 2e254a9 77621ec 962ae70 de0719b 6d0235b de0719b f1d4be6 de0719b 77621ec de0719b 962ae70 f5ea8d6 962ae70 f5ea8d6 82425ee f5ea8d6 82425ee f5ea8d6 77621ec f5ea8d6 77621ec f5ea8d6 455bf4d f5ea8d6 455bf4d 56468ea de0719b 77621ec de0719b 77621ec 88b80ae e502db5 1869cbd 37ce441 1869cbd 37ce441 e502db5 1869cbd 8ef755b 1869cbd 8ef755b 1869cbd 1b8562c 1869cbd e502db5 1869cbd e502db5 1869cbd 1b8562c 1869cbd 8ef755b 1869cbd e502db5 88b80ae 6c4adfb 87c2305 6c4adfb 88b80ae 87c2305 6c4adfb 88b80ae 87c2305 6c4adfb 87c2305 88b80ae 6c4adfb 88b80ae 6c4adfb 88b80ae 6c4adfb 87c2305 6c4adfb 77621ec 6c4adfb 87c2305 88b80ae 87c2305 6c4adfb 87c2305 88b80ae 6c4adfb 87c2305 6c4adfb 87c2305 6c4adfb 87c2305 6c4adfb 88b80ae 6c4adfb 88b80ae 6c4adfb 88b80ae 6c4adfb 88b80ae 6c4adfb 77621ec 87c2305 88b80ae 87c2305 5a41c75 88b80ae 2fd86ff 88b80ae de0719b 2fd86ff de0719b 2fd86ff de0719b d153967 de0719b 2fd86ff de0719b 77621ec de0719b 77621ec de0719b 2fd86ff de0719b f5ea8d6 2fd86ff de0719b 77621ec de0719b 56468ea de0719b 77621ec 2fd86ff 56468ea de0719b 77621ec de0719b 2fd86ff de0719b 2fd86ff de0719b 82425ee 2fd86ff 77621ec 2fd86ff 77621ec 2fd86ff 77621ec de0719b 2fd86ff de0719b 2fd86ff 77621ec 2fd86ff 77621ec 2fd86ff de0719b 0d2d632 723da6d 2fd86ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
import gradio as gr
import torch
import joblib
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import io
from PIL import Image
from scipy.interpolate import interp1d
from Bio.Graphics import GenomeDiagram
from Bio.SeqFeature import SeqFeature, FeatureLocation
from reportlab.lib import colors
###############################################################################
# 1. MODEL DEFINITION
###############################################################################
class VirusClassifier(nn.Module):
def __init__(self, input_shape: int):
super(VirusClassifier, self).__init__()
self.network = nn.Sequential(
nn.Linear(input_shape, 64),
nn.GELU(),
nn.BatchNorm1d(64),
nn.Dropout(0.3),
nn.Linear(64, 32),
nn.GELU(),
nn.BatchNorm1d(32),
nn.Dropout(0.3),
nn.Linear(32, 32),
nn.GELU(),
nn.Linear(32, 2)
)
def forward(self, x):
return self.network(x)
###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################
def parse_fasta(text):
sequences = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line: continue
if line.startswith('>'):
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
sequences.append((current_header, ''.join(current_sequence)))
return sequences
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
vec = np.zeros(len(kmers), dtype=np.float32)
for i in range(len(sequence) - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
vec[kmer_dict[kmer]] += 1
total_kmers = len(sequence) - k + 1
if total_kmers > 0:
vec /= total_kmers
return vec
###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################
def calculate_shap_values(model, x_tensor):
model.eval()
with torch.no_grad():
baseline_output = model(x_tensor)
baseline_probs = torch.softmax(baseline_output, dim=1)
baseline_prob = baseline_probs[0, 1].item() # Prob of 'human'
shap_values = []
x_zeroed = x_tensor.clone()
for i in range(x_tensor.shape[1]):
original_val = x_zeroed[0, i].item()
x_zeroed[0, i] = 0.0
output = model(x_zeroed)
probs = torch.softmax(output, dim=1)
prob = probs[0, 1].item()
shap_values.append(baseline_prob - prob)
x_zeroed[0, i] = original_val
return np.array(shap_values), baseline_prob
###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################
def compute_positionwise_scores(sequence, shap_values, k=4):
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
kmer_dict = {km: i for i, km in enumerate(kmers)}
seq_len = len(sequence)
shap_sums = np.zeros(seq_len, dtype=np.float32)
coverage = np.zeros(seq_len, dtype=np.float32)
for i in range(seq_len - k + 1):
kmer = sequence[i:i+k]
if kmer in kmer_dict:
val = shap_values[kmer_dict[kmer]]
shap_sums[i:i+k] += val
coverage[i:i+k] += 1
with np.errstate(divide='ignore', invalid='ignore'):
shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
return shap_means
###############################################################################
# 5. FIND EXTREME SHAP REGIONS
###############################################################################
def find_extreme_subregion(shap_means, window_size=500, mode="max"):
n = len(shap_means)
if n == 0: return (0, 0, 0.0)
if window_size >= n:
return (0, n, float(np.mean(shap_means)))
csum = np.zeros(n + 1, dtype=np.float32)
csum[1:] = np.cumsum(shap_means)
best_start = 0
best_sum = csum[window_size] - csum[0]
best_avg = best_sum / window_size
for start in range(1, n - window_size + 1):
wsum = csum[start + window_size] - csum[start]
wavg = wsum / window_size
if mode == "max" and wavg > best_avg:
best_avg = wavg; best_start = start
elif mode == "min" and wavg < best_avg:
best_avg = wavg; best_start = start
return (best_start, best_start + window_size, float(best_avg))
###############################################################################
# 6. PLOTTING / UTILITIES
###############################################################################
def fig_to_image(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
buf.seek(0)
img = Image.open(buf)
plt.close(fig)
return img
def get_zero_centered_cmap():
colors = [(0.0, 'blue'), (0.5, 'white'), (1.0, 'red')]
return mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors)
def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap", start=None, end=None):
if start is not None and end is not None:
local_shap = shap_means[start:end]
subtitle = f" (positions {start}-{end})"
else:
local_shap = shap_means
subtitle = ""
if len(local_shap) == 0:
local_shap = np.array([0.0])
heatmap_data = local_shap.reshape(1, -1)
min_val = np.min(local_shap)
max_val = np.max(local_shap)
extent = max(abs(min_val), abs(max_val))
cmap = get_zero_centered_cmap()
fig, ax = plt.subplots(figsize=(12, 1.8))
cax = ax.imshow(heatmap_data, aspect='auto', cmap=cmap, vmin=-extent, vmax=extent)
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.25, aspect=40, shrink=0.8)
cbar.ax.tick_params(labelsize=8)
cbar.set_label('SHAP Contribution', fontsize=9, labelpad=5)
ax.set_yticks([])
ax.set_xlabel('Position in Sequence', fontsize=10)
ax.set_title(f"{title}{subtitle}", pad=10)
plt.subplots_adjust(bottom=0.25, left=0.05, right=0.95)
return fig
def create_importance_bar_plot(shap_values, kmers, top_k=10):
plt.rcParams.update({'font.size': 10})
fig = plt.figure(figsize=(10, 5))
indices = np.argsort(np.abs(shap_values))[-top_k:]
values = shap_values[indices]
features = [kmers[i] for i in indices]
colors = ['#99ccff' if v < 0 else '#ff9999' for v in values]
plt.barh(range(len(values)), values, color=colors)
plt.yticks(range(len(values)), features)
plt.xlabel('SHAP Value (impact on model output)')
plt.title(f'Top {top_k} Most Influential k-mers')
plt.gca().invert_yaxis()
plt.tight_layout()
return fig
def plot_shap_histogram(shap_array, title="SHAP Distribution in Region"):
fig, ax = plt.subplots(figsize=(6, 4))
ax.hist(shap_array, bins=30, color='gray', edgecolor='black')
ax.axvline(0, color='red', linestyle='--', label='0.0')
ax.set_xlabel("SHAP Value")
ax.set_ylabel("Count")
ax.set_title(title)
ax.legend()
plt.tight_layout()
return fig
def compute_gc_content(sequence):
if not sequence: return 0
gc_count = sequence.count('G') + sequence.count('C')
return (gc_count / len(sequence)) * 100.0
###############################################################################
# 7. MAIN ANALYSIS STEP (Gradio Step 1)
###############################################################################
def analyze_sequence(file_obj, top_kmers=10, fasta_text="", window_size=500):
if fasta_text.strip():
text = fasta_text.strip()
elif file_obj is not None:
try:
with open(file_obj, 'r') as f:
text = f.read()
except Exception as e:
return (f"Error reading file: {str(e)}", None, None, None, None)
else:
return ("Please provide a FASTA sequence.", None, None, None, None)
sequences = parse_fasta(text)
if not sequences:
return ("No valid FASTA sequences found.", None, None, None, None)
header, seq = sequences[0]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
try:
state_dict = torch.load('model.pt', map_location=device, weights_only=True)
model = VirusClassifier(256).to(device)
model.load_state_dict(state_dict)
scaler = joblib.load('scaler.pkl')
except Exception as e:
return (f"Error loading model/scaler: {str(e)}", None, None, None, None)
freq_vector = sequence_to_kmer_vector(seq)
scaled_vector = scaler.transform(freq_vector.reshape(1, -1))
x_tensor = torch.FloatTensor(scaled_vector).to(device)
shap_values, prob_human = calculate_shap_values(model, x_tensor)
prob_nonhuman = 1.0 - prob_human
classification = "Human" if prob_human > 0.5 else "Non-human"
confidence = max(prob_human, prob_nonhuman)
shap_means = compute_positionwise_scores(seq, shap_values, k=4)
max_start, max_end, max_avg = find_extreme_subregion(shap_means, window_size, mode="max")
min_start, min_end, min_avg = find_extreme_subregion(shap_means, window_size, mode="min")
results_text = (
f"Sequence: {header}\n"
f"Length: {len(seq):,} bases\n"
f"Classification: {classification}\n"
f"Confidence: {confidence:.3f}\n"
f"(Human Probability: {prob_human:.3f}, Non-human Probability: {prob_nonhuman:.3f})\n\n"
f"---\n"
f"**Most Human-Pushing {window_size}-bp Subregion**:\n"
f"Start: {max_start}, End: {max_end}, Avg SHAP: {max_avg:.4f}\n\n"
f"**Most Non-Human–Pushing {window_size}-bp Subregion**:\n"
f"Start: {min_start}, End: {min_end}, Avg SHAP: {min_avg:.4f}"
)
kmers = [''.join(p) for p in product("ACGT", repeat=4)]
bar_fig = create_importance_bar_plot(shap_values, kmers, top_kmers)
bar_img = fig_to_image(bar_fig)
heatmap_fig = plot_linear_heatmap(shap_means, title="Genome-wide SHAP")
heatmap_img = fig_to_image(heatmap_fig)
state_dict_out = {"seq": seq, "shap_means": shap_means}
return (results_text, bar_img, heatmap_img, state_dict_out, header)
###############################################################################
# 8. SUBREGION ANALYSIS (Gradio Step 2)
###############################################################################
def analyze_subregion(state, header, region_start, region_end):
if not state or "seq" not in state or "shap_means" not in state:
return ("No sequence data found. Please run Step 1 first.", None, None)
seq = state["seq"]
shap_means = state["shap_means"]
region_start = int(region_start)
region_end = int(region_end)
region_start = max(0, min(region_start, len(seq)))
region_end = max(0, min(region_end, len(seq)))
if region_end <= region_start:
return ("Invalid region range. End must be > Start.", None, None)
region_seq = seq[region_start:region_end]
region_shap = shap_means[region_start:region_end]
gc_percent = compute_gc_content(region_seq)
avg_shap = float(np.mean(region_shap))
positive_fraction = np.mean(region_shap > 0)
negative_fraction = np.mean(region_shap < 0)
if avg_shap > 0.05:
region_classification = "Likely pushing toward human"
elif avg_shap < -0.05:
region_classification = "Likely pushing toward non-human"
else:
region_classification = "Near neutral (no strong push)"
region_info = (
f"Analyzing subregion of {header} from {region_start} to {region_end}\n"
f"Region length: {len(region_seq)} bases\n"
f"GC content: {gc_percent:.2f}%\n"
f"Average SHAP in region: {avg_shap:.4f}\n"
f"Fraction with SHAP > 0 (toward human): {positive_fraction:.2f}\n"
f"Fraction with SHAP < 0 (toward non-human): {negative_fraction:.2f}\n"
f"Subregion interpretation: {region_classification}\n"
)
heatmap_fig = plot_linear_heatmap(shap_means, title="Subregion SHAP", start=region_start, end=region_end)
heatmap_img = fig_to_image(heatmap_fig)
hist_fig = plot_shap_histogram(region_shap, title="SHAP Distribution in Subregion")
hist_img = fig_to_image(hist_fig)
return (region_info, heatmap_img, hist_img)
###############################################################################
# 9. COMPARISON ANALYSIS FUNCTIONS
###############################################################################
def get_zero_centered_cmap():
"""Create a zero-centered blue-white-red colormap"""
colors = [(0.0, 'blue'), (0.5, 'white'), (1.0, 'red')]
return mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors)
def compute_shap_difference(shap1_norm, shap2_norm):
"""Compute the SHAP difference between normalized sequences"""
return shap2_norm - shap1_norm
def plot_comparative_heatmap(shap_diff, title="SHAP Difference Heatmap"):
"""
Plot heatmap using relative positions (0-100%)
"""
heatmap_data = shap_diff.reshape(1, -1)
extent = max(abs(np.min(shap_diff)), abs(np.max(shap_diff)))
fig, ax = plt.subplots(figsize=(12, 1.8))
cmap = get_zero_centered_cmap()
cax = ax.imshow(heatmap_data, aspect='auto', cmap=cmap, vmin=-extent, vmax=extent)
# Create percentage-based x-axis ticks
num_ticks = 5
tick_positions = np.linspace(0, shap_diff.shape[0]-1, num_ticks)
tick_labels = [f"{int(x*100)}%" for x in np.linspace(0, 1, num_ticks)]
ax.set_xticks(tick_positions)
ax.set_xticklabels(tick_labels)
cbar = plt.colorbar(cax, orientation='horizontal', pad=0.25, aspect=40, shrink=0.8)
cbar.ax.tick_params(labelsize=8)
cbar.set_label('SHAP Difference (Seq2 - Seq1)', fontsize=9, labelpad=5)
ax.set_yticks([])
ax.set_xlabel('Relative Position in Sequence', fontsize=10)
ax.set_title(title, pad=10)
plt.subplots_adjust(bottom=0.25, left=0.05, right=0.95)
return fig
def plot_shap_histogram(shap_array, title="SHAP Distribution", num_bins=30):
"""
Plot histogram of SHAP values with configurable number of bins
"""
fig, ax = plt.subplots(figsize=(6, 4))
ax.hist(shap_array, bins=num_bins, color='gray', edgecolor='black', alpha=0.7)
ax.axvline(0, color='red', linestyle='--', label='0.0')
ax.set_xlabel("SHAP Value")
ax.set_ylabel("Count")
ax.set_title(title)
ax.legend()
plt.tight_layout()
return fig
def calculate_adaptive_parameters(len1, len2):
"""
Calculate adaptive parameters based on sequence lengths and their difference.
Returns: (num_points, smooth_window, resolution_factor)
"""
length_diff = abs(len1 - len2)
max_length = max(len1, len2)
min_length = min(len1, len2)
length_ratio = min_length / max_length
# Base number of points scales with sequence length
base_points = min(2000, max(500, max_length // 100))
# Adjust parameters based on sequence properties
if length_diff < 500:
resolution_factor = 2.0
num_points = min(3000, base_points * 2)
smooth_window = max(10, length_diff // 50)
elif length_diff < 5000:
resolution_factor = 1.5
num_points = min(2000, base_points * 1.5)
smooth_window = max(20, length_diff // 100)
elif length_diff < 50000:
resolution_factor = 1.0
num_points = base_points
smooth_window = max(50, length_diff // 200)
else:
resolution_factor = 0.75
num_points = max(500, base_points // 2)
smooth_window = max(100, length_diff // 500)
# Adjust window size based on length ratio
smooth_window = int(smooth_window * (1 + (1 - length_ratio)))
return int(num_points), int(smooth_window), resolution_factor
def sliding_window_smooth(values, window_size=50):
"""
Apply sliding window smoothing with edge handling
"""
if window_size < 3:
return values
# Create window with exponential decay at edges
window = np.ones(window_size)
decay = np.exp(-np.linspace(0, 3, window_size // 2))
window[:window_size // 2] = decay
window[-(window_size // 2):] = decay[::-1]
window = window / window.sum()
# Apply convolution
smoothed = np.convolve(values, window, mode='valid')
# Handle edges
pad_size = len(values) - len(smoothed)
pad_left = pad_size // 2
pad_right = pad_size - pad_left
result = np.zeros_like(values)
result[pad_left:-pad_right] = smoothed
result[:pad_left] = values[:pad_left]
result[-pad_right:] = values[-pad_right:]
return result
def normalize_shap_lengths(shap1, shap2):
"""
Normalize and smooth SHAP values with dynamic adaptation
"""
# Calculate adaptive parameters
num_points, smooth_window, _ = calculate_adaptive_parameters(len(shap1), len(shap2))
# Apply initial smoothing
shap1_smooth = sliding_window_smooth(shap1, smooth_window)
shap2_smooth = sliding_window_smooth(shap2, smooth_window)
# Create relative positions and interpolate
x1 = np.linspace(0, 1, len(shap1_smooth))
x2 = np.linspace(0, 1, len(shap2_smooth))
x_norm = np.linspace(0, 1, num_points)
shap1_interp = np.interp(x_norm, x1, shap1_smooth)
shap2_interp = np.interp(x_norm, x2, shap2_smooth)
return shap1_interp, shap2_interp, smooth_window
def analyze_sequence_comparison(file1, file2, fasta1="", fasta2=""):
"""
Compare two sequences with adaptive parameters and visualization
"""
try:
# Analyze first sequence
res1 = analyze_sequence(file1, top_kmers=10, fasta_text=fasta1, window_size=500)
if isinstance(res1[0], str) and "Error" in res1[0]:
return (f"Error in sequence 1: {res1[0]}", None, None)
# Analyze second sequence
res2 = analyze_sequence(file2, top_kmers=10, fasta_text=fasta2, window_size=500)
if isinstance(res2[0], str) and "Error" in res2[0]:
return (f"Error in sequence 2: {res2[0]}", None, None)
# Extract SHAP values and sequence info
shap1 = res1[3]["shap_means"]
shap2 = res2[3]["shap_means"]
# Calculate sequence properties
len1, len2 = len(shap1), len(shap2)
length_diff = abs(len1 - len2)
length_ratio = min(len1, len2) / max(len1, len2)
# Normalize and compare sequences
shap1_norm, shap2_norm, smooth_window = normalize_shap_lengths(shap1, shap2)
shap_diff = compute_shap_difference(shap1_norm, shap2_norm)
# Calculate adaptive threshold and statistics
base_threshold = 0.05
adaptive_threshold = base_threshold * (1 + (1 - length_ratio))
if length_diff > 50000:
adaptive_threshold *= 1.5
# Calculate comparison statistics
avg_diff = np.mean(shap_diff)
std_diff = np.std(shap_diff)
max_diff = np.max(shap_diff)
min_diff = np.min(shap_diff)
substantial_diffs = np.abs(shap_diff) > adaptive_threshold
frac_different = np.mean(substantial_diffs)
# Extract classifications
try:
classification1 = res1[0].split('Classification: ')[1].split('\n')[0].strip()
classification2 = res2[0].split('Classification: ')[1].split('\n')[0].strip()
except:
classification1 = "Unknown"
classification2 = "Unknown"
# Format output text
comparison_text = (
"Sequence Comparison Results:\n"
f"Sequence 1: {res1[4]}\n"
f"Length: {len1:,} bases\n"
f"Classification: {classification1}\n\n"
f"Sequence 2: {res2[4]}\n"
f"Length: {len2:,} bases\n"
f"Classification: {classification2}\n\n"
"Comparison Parameters:\n"
f"Length Difference: {length_diff:,} bases\n"
f"Length Ratio: {length_ratio:.3f}\n"
f"Smoothing Window: {smooth_window} points\n"
f"Adaptive Threshold: {adaptive_threshold:.3f}\n\n"
"Statistics:\n"
f"Average SHAP difference: {avg_diff:.4f}\n"
f"Standard deviation: {std_diff:.4f}\n"
f"Max difference: {max_diff:.4f} (Seq2 more human-like)\n"
f"Min difference: {min_diff:.4f} (Seq1 more human-like)\n"
f"Fraction with substantial differences: {frac_different:.2%}\n\n"
"Note: All parameters automatically adjusted based on sequence properties\n\n"
"Interpretation:\n"
"- Red regions: Sequence 2 more human-like\n"
"- Blue regions: Sequence 1 more human-like\n"
"- White regions: Similar between sequences"
)
# Generate visualizations
heatmap_fig = plot_comparative_heatmap(
shap_diff,
title=f"SHAP Difference Heatmap (window: {smooth_window})"
)
heatmap_img = fig_to_image(heatmap_fig)
# Create histogram with adaptive bins
num_bins = max(20, min(50, int(np.sqrt(len(shap_diff)))))
hist_fig = plot_shap_histogram(
shap_diff,
title="Distribution of SHAP Differences",
num_bins=num_bins
)
hist_img = fig_to_image(hist_fig)
return comparison_text, heatmap_img, hist_img
except Exception as e:
error_msg = f"Error during sequence comparison: {str(e)}"
return error_msg, None, None
###############################################################################
# 11. GENE FEATURE ANALYSIS
###############################################################################
def parse_gene_features(text):
"""Parse gene features from text file in FASTA-like format"""
genes = []
current_header = None
current_sequence = []
for line in text.strip().split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('>'):
if current_header:
genes.append({
'header': current_header,
'sequence': ''.join(current_sequence),
'metadata': parse_gene_metadata(current_header)
})
current_header = line[1:]
current_sequence = []
else:
current_sequence.append(line.upper())
if current_header:
genes.append({
'header': current_header,
'sequence': ''.join(current_sequence),
'metadata': parse_gene_metadata(current_header)
})
return genes
def parse_gene_metadata(header):
"""Extract metadata from gene header"""
metadata = {}
parts = header.split()
for part in parts:
if '[' in part and ']' in part:
key_value = part[1:-1].split('=', 1)
if len(key_value) == 2:
metadata[key_value[0]] = key_value[1]
return metadata
def analyze_gene_features(sequence_file, features_file, fasta_text="", features_text=""):
"""Analyze SHAP values for each gene feature"""
# First analyze whole sequence
sequence_results = analyze_sequence(sequence_file, top_kmers=10, fasta_text=fasta_text)
if isinstance(sequence_results[0], str) and "Error" in sequence_results[0]:
return f"Error in sequence analysis: {sequence_results[0]}", None, None
# Get SHAP values
shap_means = sequence_results[3]["shap_means"]
# Parse gene features
if features_text.strip():
genes = parse_gene_features(features_text)
else:
try:
with open(features_file, 'r') as f:
genes = parse_gene_features(f.read())
except Exception as e:
return f"Error reading features file: {str(e)}", None, None
# Analyze each gene
gene_results = []
for gene in genes:
try:
location = gene['metadata'].get('location', '')
if not location:
continue
# Parse location (assuming format like "21729..22861")
start, end = map(int, location.split('..'))
# Get SHAP values for this region
gene_shap = shap_means[start:end]
avg_shap = float(np.mean(gene_shap))
gene_results.append({
'gene_name': gene['metadata'].get('gene', 'Unknown'),
'location': location,
'avg_shap': avg_shap,
'start': start,
'end': end,
'locus_tag': gene['metadata'].get('locus_tag', ''),
'classification': 'Human' if avg_shap > 0 else 'Non-human',
'confidence': abs(avg_shap)
})
except Exception as e:
print(f"Error processing gene {gene['metadata'].get('gene', 'Unknown')}: {str(e)}")
continue
# Create CSV output
csv_output = "gene_name,location,avg_shap,classification,confidence,locus_tag\n"
for result in gene_results:
csv_output += f"{result['gene_name']},{result['location']},{result['avg_shap']:.4f},"
csv_output += f"{result['classification']},{result['confidence']:.4f},{result['locus_tag']}\n"
# Create genome diagram
diagram_img = create_genome_diagram(gene_results, len(shap_means))
return gene_results, csv_output, diagram_img
def create_genome_diagram(gene_results, genome_length):
"""Create genome diagram using BioPython"""
# Create diagram
gd_diagram = GenomeDiagram.Diagram("Genome SHAP Analysis")
gd_track = gd_diagram.new_track(1, name="Genes")
gd_feature_set = gd_track.new_set()
# Add features
for gene in gene_results:
# Create feature
feature = SeqFeature(
FeatureLocation(gene['start'], gene['end']),
type="gene"
)
# Calculate color based on SHAP value
if gene['avg_shap'] > 0:
intensity = min(1.0, abs(gene['avg_shap']) * 2)
color = colors.Color(1-intensity, 1-intensity, 1) # Red
else:
intensity = min(1.0, abs(gene['avg_shap']) * 2)
color = colors.Color(1-intensity, 1-intensity, 1) # Blue
# Add to diagram
gd_feature_set.add_feature(
feature,
color=color,
label=True,
name=f"{gene['gene_name']}\n(SHAP: {gene['avg_shap']:.3f})"
)
# Draw diagram
gd_diagram.draw(
format="linear",
orientation="landscape",
pagesize=(15, 5),
start=0,
end=genome_length,
fragments=1
)
# Save to BytesIO and convert to PIL Image
buffer = BytesIO()
gd_diagram.write(buffer, "PNG")
buffer.seek(0)
return Image.open(buffer)
###############################################################################
# 12. DOWNLOAD FUNCTIONS
###############################################################################
def prepare_csv_download(data, filename="analysis_results.csv"):
"""Prepare CSV data for download"""
if isinstance(data, str):
return data.encode(), filename
elif isinstance(data, (list, dict)):
import csv
from io import StringIO
output = StringIO()
writer = csv.DictWriter(output, fieldnames=data[0].keys())
writer.writeheader()
writer.writerows(data)
return output.getvalue().encode(), filename
else:
raise ValueError("Unsupported data type for CSV download")
###############################################################################
# 13. BUILD GRADIO INTERFACE
###############################################################################
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.download-button {
margin-top: 10px;
}
"""
with gr.Blocks(css=css) as iface:
gr.Markdown("""
# Virus Host Classifier
**Step 1**: Predict overall viral sequence origin (human vs non-human) and identify extreme regions.
**Step 2**: Explore subregions to see local SHAP signals, distribution, GC content, etc.
**Step 3**: Analyze gene features and their contributions.
**Step 4**: Compare sequences and analyze differences.
**Color Scale**: Negative SHAP = Blue, Zero = White, Positive = Red.
""")
with gr.Tab("1) Full-Sequence Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
text_input = gr.Textbox(label="Or paste FASTA sequence", placeholder=">sequence_name\nACGTACGT...", lines=5)
top_k = gr.Slider(minimum=5, maximum=30, value=10, step=1, label="Number of top k-mers to display")
win_size = gr.Slider(minimum=100, maximum=5000, value=500, step=100, label="Window size for 'most pushing' subregions")
analyze_btn = gr.Button("Analyze Sequence", variant="primary")
with gr.Column(scale=2):
results_box = gr.Textbox(label="Classification Results", lines=12, interactive=False)
kmer_img = gr.Image(label="Top k-mer SHAP")
genome_img = gr.Image(label="Genome-wide SHAP Heatmap (Blue=neg, White=0, Red=pos)")
download_results = gr.File(label="Download Results", visible=False, elem_classes="download-button")
seq_state = gr.State()
header_state = gr.State()
analyze_btn.click(
analyze_sequence,
inputs=[file_input, top_k, text_input, win_size],
outputs=[results_box, kmer_img, genome_img, seq_state, header_state, download_results]
)
with gr.Tab("2) Subregion Exploration"):
gr.Markdown("""
**Subregion Analysis**
Select start/end positions to view local SHAP signals, distribution, GC content, etc.
The heatmap uses the same Blue-White-Red scale.
""")
with gr.Row():
region_start = gr.Number(label="Region Start", value=0)
region_end = gr.Number(label="Region End", value=500)
region_btn = gr.Button("Analyze Subregion")
subregion_info = gr.Textbox(label="Subregion Analysis", lines=7, interactive=False)
with gr.Row():
subregion_img = gr.Image(label="Subregion SHAP Heatmap (B-W-R)")
subregion_hist_img = gr.Image(label="SHAP Distribution (Histogram)")
download_subregion = gr.File(label="Download Subregion Analysis", visible=False, elem_classes="download-button")
region_btn.click(
analyze_subregion,
inputs=[seq_state, header_state, region_start, region_end],
outputs=[subregion_info, subregion_img, subregion_hist_img, download_subregion]
)
with gr.Tab("3) Gene Features Analysis"):
gr.Markdown("""
**Analyze Gene Features**
Upload a FASTA file and corresponding gene features file to analyze SHAP values per gene.
Gene features should be in the format:
```
>gene_name [gene=X] [locus_tag=Y] [location=start..end]
SEQUENCE
```
The genome viewer will show genes color-coded by their contribution:
- Red: Genes pushing toward human origin
- Blue: Genes pushing toward non-human origin
- Color intensity indicates strength of signal
""")
with gr.Row():
with gr.Column(scale=1):
gene_fasta_file = gr.File(label="Upload FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
gene_fasta_text = gr.Textbox(label="Or paste FASTA sequence", placeholder=">sequence_name\nACGTACGT...", lines=5)
with gr.Column(scale=1):
features_file = gr.File(label="Upload gene features file", file_types=[".txt"], type="filepath")
features_text = gr.Textbox(label="Or paste gene features", placeholder=">gene_1 [gene=U12]...\nACGT...", lines=5)
analyze_genes_btn = gr.Button("Analyze Gene Features", variant="primary")
gene_results = gr.Textbox(label="Gene Analysis Results", lines=12, interactive=False)
gene_diagram = gr.Image(label="Genome Diagram with Gene Features")
download_gene_results = gr.File(label="Download Gene Analysis", visible=False, elem_classes="download-button")
analyze_genes_btn.click(
analyze_gene_features,
inputs=[gene_fasta_file, features_file, gene_fasta_text, features_text],
outputs=[gene_results, download_gene_results, gene_diagram]
)
with gr.Tab("4) Comparative Analysis"):
gr.Markdown("""
**Compare Two Sequences**
Upload or paste two FASTA sequences to compare their SHAP patterns.
The sequences will be normalized to the same length for comparison.
**Color Scale**:
- Red: Sequence 2 is more human-like in this region
- Blue: Sequence 1 is more human-like in this region
- White: No substantial difference
""")
with gr.Row():
with gr.Column(scale=1):
file_input1 = gr.File(label="Upload first FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
text_input1 = gr.Textbox(label="Or paste first FASTA sequence", placeholder=">sequence1\nACGTACGT...", lines=5)
with gr.Column(scale=1):
file_input2 = gr.File(label="Upload second FASTA file", file_types=[".fasta", ".fa", ".txt"], type="filepath")
text_input2 = gr.Textbox(label="Or paste second FASTA sequence", placeholder=">sequence2\nACGTACGT...", lines=5)
compare_btn = gr.Button("Compare Sequences", variant="primary")
comparison_text = gr.Textbox(label="Comparison Results", lines=12, interactive=False)
with gr.Row():
diff_heatmap = gr.Image(label="SHAP Difference Heatmap")
diff_hist = gr.Image(label="Distribution of SHAP Differences")
download_comparison = gr.File(label="Download Comparison Results", visible=False, elem_classes="download-button")
compare_btn.click(
analyze_sequence_comparison,
inputs=[file_input1, file_input2, text_input1, text_input2],
outputs=[comparison_text, diff_heatmap, diff_hist, download_comparison]
)
gr.Markdown("""
### Interface Features
- **Overall Classification** (human vs non-human) using k-mer frequencies
- **SHAP Analysis** shows which k-mers push classification toward or away from human
- **White-Centered SHAP Gradient**:
- Negative (blue), 0 (white), Positive (red)
- Symmetrical color range around 0
- **Identify Subregions** with strongest push for human or non-human
- **Gene Feature Analysis**:
- Analyze individual genes' contributions
- Interactive genome viewer
- Gene-level statistics and classification
- **Sequence Comparison**:
- Compare two sequences to identify regions of difference
- Normalized comparison to handle different lengths
- Statistical summary of differences
- **Data Export**:
- Download results as CSV files
- Save analysis outputs for further processing
""")
if __name__ == "__main__":
iface.launch() |