Spaces:
Sleeping
Sleeping
File size: 4,574 Bytes
f60ce93 7d04c1c 0059ef7 bcf8eca bf91270 a2e3d4b ef3a227 a828d88 9ccc625 33c190e 7944a63 0059ef7 037b3d4 66ad10a 0059ef7 4d92e12 4b60c06 0059ef7 4b60c06 5c158f1 4b60c06 cfb90d5 4b60c06 d5fefc1 037b3d4 0059ef7 037b3d4 ac213c9 f60ce93 060dcc2 45b475d 659d788 f60ce93 a9b361d c73e4be a044018 a2e3d4b d53ce83 3592cb3 a828d88 ff8cf9b 330195f 1b01b6f 5ef2581 77897c3 5464374 77897c3 1b01b6f 3592cb3 5e24005 3592cb3 1b01b6f 3592cb3 cfb90d5 5e24005 9251b0b 5464374 70d322c add7386 a2e3d4b 33c190e 8fb59d9 5ebff3c 8fb59d9 a2e3d4b 9ccc625 2ab2dc2 33c190e e558219 a2e3d4b 1dab293 2ab2dc2 e558219 f83ec42 330195f a044018 2ab2dc2 8fb59d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import streamlit as st
import re
import numpy as np
import pandas as pd
import sklearn
import xgboost
import shap
from shap_plots import shap_summary_plot
import plotly.tools as tls
import dash_core_components as dcc
import matplotlib
import plotly.graph_objs as go
try:
import matplotlib.pyplot as pl
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.ticker import MaxNLocator
except ImportError:
pass
st.set_option('deprecation.showPyplotGlobalUse', False)
seed=42
annotations = pd.read_csv("annotations_dataset.csv")
annotations = annotations.set_index("Gene")
training_data = pd.read_csv("./selected_features_training_data.csv", header=0)
training_data.columns = [
regex.sub("_", col) if any(x in str(col) for x in set(("[", "]", "<"))) else col
for col in training_data.columns.values
]
training_data["BPlabel_encoded"] = training_data["BPlabel"].map(
{"most likely": 1, "probable": 0.75, "least likely": 0.1}
)
Y = training_data["BPlabel_encoded"]
X = training_data.drop(columns=["BPlabel_encoded","BPlabel"])
xgb = xgboost.XGBRegressor(
n_estimators=40,
learning_rate=0.2,
max_depth=4,
reg_alpha=1,
reg_lambda=1,
random_state=seed,
objective="reg:squarederror")
xgb.fit(X, Y)
prediction_list = list(xgb.predict(annotations))
predictions = [round(prediction, 2) for prediction in prediction_list]
output = pd.Series(data=predictions, index=annotations.index, name="XGB_Score")
df_total = pd.concat([annotations, output], axis=1)
df_total = df_total[['XGB_Score', 'mousescore_Exomiser',
'SDI', 'Liver_GTExTPM', 'pLI_ExAC',
'HIPred',
'Cells - EBV-transformed lymphocytes_GTExTPM',
'Pituitary_GTExTPM',
'IPA_BP_annotation']]
st.title('Blood Pressure Gene Prioritisation Post-GWAS')
st.markdown("""
A machine learning pipeline for predicting disease-causing genes post-genome-wide association study in blood pressure.
""")
collect_genes = lambda x : [str(i) for i in re.split(",|,\s+|\s+", x) if i != ""]
input_gene_list = st.text_input("Input list of HGNC genes (enter comma separated):")
gene_list = collect_genes(input_gene_list)
explainer = shap.TreeExplainer(xgb)
@st.experimental_memo
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
if len(gene_list) > 1:
df = df_total[df_total.index.isin(gene_list)]
df['Gene'] = df.index
df.reset_index(drop=True, inplace=True)
df = df[['Gene','XGB_Score', 'mousescore_Exomiser',
'SDI', 'Liver_GTExTPM', 'pLI_ExAC',
'HIPred',
'Cells - EBV-transformed lymphocytes_GTExTPM',
'Pituitary_GTExTPM',
'IPA_BP_annotation']]
st.dataframe(df)
output = df[['Gene', 'XGB_Score']]
csv = convert_df(output)
st.download_button(
"Download Gene Prioritisation",
csv,
"bp_gene_prioritisation.csv",
"text/csv",
key='download-csv'
)
df_shap = df_total[df_total.index.isin(gene_list)]
df_shap.drop(columns='XGB_Score', inplace=True)
shap_values = explainer.shap_values(df_shap)
summary_plot = shap.summary_plot(shap_values, df_shap)
st.pyplot(fig=summary_plot)
st.caption("SHAP Summary Plot of All Input Genes")
feature_order = np.argsort(np.sum(np.abs(shap_values), axis=0)[:-1])
feature_order = feature_order[-min(8, len(feature_order)):]
col_order = [df_shap.columns[i] for i in feature_order]
else:
pass
input_gene = st.text_input("Input individual HGNC gene:")
df2 = df_total[df_total.index == input_gene]
df2['Gene'] = df2.index
df2.reset_index(drop=True, inplace=True)
df2 = df2[['Gene','XGB_Score', 'mousescore_Exomiser',
'SDI', 'Liver_GTExTPM', 'pLI_ExAC',
'HIPred',
'Cells - EBV-transformed lymphocytes_GTExTPM',
'Pituitary_GTExTPM',
'IPA_BP_annotation']]
st.dataframe(df2)
if input_gene:
df2_shap = df_total[df_total.index == input_gene]
df2_shap.drop(columns='XGB_Score', inplace=True)
shap_values = explainer.shap_values(df2_shap)
shap.getjs()
force_plot = shap.force_plot(
explainer.expected_value,
shap_values,
df2_shap,
matplotlib = True,show=False)
st.pyplot(fig=force_plot)
else:
pass
st.markdown("""
Total Gene Prioritisation Results:
""")
df_total_output = df_total
df_total_output['Gene'] = df_total_output.index
df_total_output.reset_index(drop=True, inplace=True)
df_total_output = df_total_output[['Gene','XGB_Score', 'mousescore_Exomiser',
'SDI', 'Liver_GTExTPM', 'pLI_ExAC',
'HIPred',
'Cells - EBV-transformed lymphocytes_GTExTPM',
'Pituitary_GTExTPM',
'IPA_BP_annotation']]
st.dataframe(df_total_output)
|