File size: 14,243 Bytes
c5d83eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
963cbcc
c5d83eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee37fa5
 
c5d83eb
 
 
ee37fa5
 
 
 
c5d83eb
ee37fa5
 
f17dee3
 
3109162
 
f17dee3
 
 
 
 
 
 
 
 
 
 
 
ee37fa5
 
 
c5d83eb
 
ee37fa5
 
 
f17dee3
 
ee37fa5
c5d83eb
ee37fa5
 
 
f17dee3
c5d83eb
3109162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee37fa5
c5d83eb
 
 
3974e10
c5d83eb
 
 
 
 
 
 
 
 
 
 
 
 
 
3974e10
c5d83eb
 
 
 
 
 
 
 
 
 
 
 
d8424e9
c5d83eb
 
 
ee37fa5
c5d83eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
066589e
d8424e9
066589e
c5d83eb
066589e
c5d83eb
 
 
d8424e9
 
066589e
 
 
 
 
05bd27c
066589e
 
d8424e9
a92bada
d8424e9
c5d83eb
 
d8424e9
 
c5d83eb
c5ffe88
066589e
ba74dd8
 
066589e
 
 
 
 
 
 
 
c5d83eb
d8424e9
 
066589e
c5d83eb
fa93db6
c5d83eb
 
fa93db6
 
 
 
 
 
d8424e9
c5d83eb
fa93db6
 
 
 
 
 
 
c5d83eb
fa93db6
 
 
 
 
 
c5d83eb
 
 
 
fa93db6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5d83eb
 
 
 
 
fa93db6
c5d83eb
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# huggingface packages
import evaluate
import datasets

# faireval functions
from .FairEvalUtils import *

# packages to manage input formats
import importlib
from typing import List, Optional, Union
from seqeval.metrics.v1 import check_consistent_length
from seqeval.scheme import Entities, Token, auto_detect

_CITATION = """\
@inproceedings{ortmann2022,
    title = {Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans},
    author = {Katrin Ortmann},
    url = {https://aclanthology.org/2022.lrec-1.150},
    year = {2022},
    date = {2022-06-21},
    booktitle = {Proceedings of the Language Resources and Evaluation Conference (LREC)},
    pages = {1400-1407},
    publisher = {European Language Resources Association},
    address = {Marseille, France},
    pubstate = {published},
    type = {inproceedings}
}
"""

_DESCRIPTION = """\
New evaluation method that more accurately reflects true annotation quality by ensuring that every error is counted 
only once - avoiding the penalty to close-to-target annotations happening in traditional evaluation. 
In addition to the traditional categories of true positives (TP), false positives (FP), and false negatives 
(FN), the new method takes into account more fine-grained error types: labeling errors (LE), boundary errors (BE), 
and labeling-boundary errors (LBE). 
"""

_KWARGS_DESCRIPTION = """
Outputs the error count (TP, FP, etc.) and resulting scores (Precision, Recall and F1) from a reference list of 
spans compared against a predicted one. The user can choose to see traditional or fair error counts and scores by 
switching the argument 'mode'.
For the computation of the fair metrics from the error count please refer to: https://aclanthology.org/2022.lrec-1.150.pdf
Args:
    predictions: a list of lists of predicted labels, i.e. estimated targets as returned by a tagger.
    references: list of ground truth reference labels. Predicted sentences must have the same number of tokens as the references.
    mode: 'fair', 'traditional' ot 'weighted. Controls the desired output. The default value is 'fair'.
        - 'traditional': equivalent to seqeval's metrics / classic span-based evaluation.
        - 'fair': default fair score calculation. It will also show traditional scores for comparison.
        - 'weighted': custom score calculation with the weights passed.  It will also show traditional scores for comparison.
    weights: dictionary with the weight of each error for the custom score calculation. 
        If none is passed and the mode is set to 'weighted', the following is used:
        {"TP": {"TP": 1},
        "FP": {"FP": 1},
        "FN": {"FN": 1},
        "LE": {"TP": 0, "FP": 0.5, "FN": 0.5},
        "BE": {"TP": 0.5, "FP": 0.25, "FN": 0.25},
        "LBE": {"TP": 0, "FP": 0.5, "FN": 0.5}}
    error_format: 'count', 'error_ratio' or 'entity_ratio'. Controls the desired output for TP, FP, BE, LE, etc:.  Default value is 'count'.
        - 'count': absolute count of each parameter. 
        - 'error_ratio': precentage with respect to the total errors that each parameter represents.
        - 'entity_ratio': precentage with respect to the total number of ground truth entites that each parameter represents.
    zero_division: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
    suffix: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
    scheme: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
Returns:
    A dictionary with:
        - Overall error parameter count (or ratio) and resulting scores.
        - A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores

    If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair' or 
    'weighted', TP remains the same, FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
    
Examples:
    >>> faireval = evaluate.load("hpi-dhc/FairEval")
    >>> pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
    >>> ref =  [['O', 'O', 'O',      'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
    >>> results = faireval.compute(predictions=pred, references=ref, mode='fair', error_format='count')
    >>> print(results)
    {
   "MISC": {
      "precision": 0.0,
      "recall": 0.0,
      "f1": 0.0,
      "trad_prec": 0.0,
      "trad_rec": 0.0,
      "trad_f1": 0.0,
      "TP": 0,
      "FP": 0.0,
      "FN": 0.0,
      "LE": 0.0,
      "BE": 1.0,
      "LBE": 0.0
   },
   "PER": {
      "precision": 1.0,
      "recall": 1.0,
      "f1": 1.0,
      "trad_prec": 1.0,
      "trad_rec": 1.0,
      "trad_f1": 1.0,
      "TP": 1,
      "FP": 0.0,
      "FN": 0.0,
      "LE": 0.0,
      "BE": 0.0,
      "LBE": 0.0
   },
   "overall_precision": 0.6666666666666666,
   "overall_recall": 0.6666666666666666,
   "overall_f1": 0.6666666666666666,
   "overall_trad_prec": 0.5,
   "overall_trad_rec": 0.5,
   "overall_trad_f1": 0.5,
   "TP": 1,
   "FP": 0.0,
   "FN": 0.0,
   "LE": 0.0,
   "BE": 1.0,
   "LBE": 0.0
    }
    """


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class FairEval(evaluate.Metric):

    def _info(self):
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                "predictions": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
                "references": datasets.Sequence(datasets.Value("string", id="label"), id="sequence"),
            }),
            # Homepage of the module for documentation
            homepage="https://huggingface.co/spaces/hpi-dhc/FairEval",
            # Additional links to the codebase or references
            codebase_urls=["https://github.com/rubcompling/FairEval#acknowledgement"],
            reference_urls=["https://aclanthology.org/2022.lrec-1.150.pdf"]
        )

    def _compute(
            self,
            predictions,
            references,
            suffix: bool = False,
            scheme: Optional[str] = None,
            mode: Optional[str] = 'fair',
            weights: dict = None,
            error_format: Optional[str] = 'count',
            zero_division: Union[str, int] = "warn",
    ):
        """Returns the error parameter counts and scores"""
        # (1) SEQEVAL INPUT MANAGEMENT
        if scheme is not None:
            try:
                scheme_module = importlib.import_module("seqeval.scheme")
                scheme = getattr(scheme_module, scheme)
            except AttributeError:
                raise ValueError(f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {scheme}")

        y_true = references
        y_pred = predictions

        check_consistent_length(y_true, y_pred)

        if scheme is None or not issubclass(scheme, Token):
            scheme = auto_detect(y_true, suffix)

        true_spans = Entities(y_true, scheme, suffix).entities
        pred_spans = Entities(y_pred, scheme, suffix).entities

        # (2) TRANSFORM FROM SEQEVAL TO FAIREVAL SPAN FORMAT
        true_spans = seq_to_fair(true_spans)
        pred_spans = seq_to_fair(pred_spans)

        # (3) COUNT ERRORS AND CALCULATE SCORES (counting total ground truth entities too)
        total_errors = compare_spans([], [])
        total_ref_entities = 0
        for i in range(len(true_spans)):
            total_ref_entities += len(true_spans[i])
            sentence_errors = compare_spans(true_spans[i], pred_spans[i])
            total_errors = add_dict(total_errors, sentence_errors)

        if weights is None and mode == 'weighted':
            weights = {"TP": {"TP": 1},
                       "FP": {"FP": 1},
                       "FN": {"FN": 1},
                       "LE": {"TP": 0, "FP": 0.5, "FN": 0.5},
                       "BE": {"TP": 0.5, "FP": 0.25, "FN": 0.25},
                       "LBE": {"TP": 0, "FP": 0.5, "FN": 0.5}}
            print("The chosen mode is \'weighted\', but no weights are given. Setting weights to:")
            for k in weights:
                print(k, ":", weights[k])

        config = {"labels": "all", "eval_method": ['traditional', 'fair', 'weighted'], "weights": weights,}
        results = calculate_results(total_errors, config)
        del results['conf']

        # (4) SELECT OUTPUT MODE AND REFORMAT AS SEQEVAL-HUGGINGFACE OUTPUT
        # initialize empty dictionary and count errors
        output = {}
        # control the denominator for the error_format (count, proportion over total errors or over total entities)
        if error_format == 'count':
            trad_divider = 1
            fair_divider = 1
        elif error_format == 'entity_ratio':
            trad_divider = total_ref_entities
            fair_divider = total_ref_entities
        elif error_format == 'error_ratio':
            trad_divider = results['overall']['traditional']['FP'] + results['overall']['traditional']['FN']
            fair_divider = results['overall']['fair']['FP'] + results['overall']['fair']['FN'] + \
                                results['overall']['fair']['LE'] + results['overall']['fair']['BE'] + \
                                results['overall']['fair']['LBE']

        # assert valid options
        assert mode in ['traditional', 'fair', 'weighted'], 'mode must be \'traditional\', \'fair\' or \'weighted\''
        assert error_format in ['count', 'error_ratio', 'entity_ratio'], 'error_format must be \'count\', \'error_ratio\' or \'entity_ratio\''

        # append entity-level errors and scores
        if mode == 'traditional':
            for k, v in results['per_label'][mode].items():
                output[k] = {# traditional scores
                             'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'],

                             # traditional errors
                             'TP': v['TP'] / trad_divider if error_format == 'entity_ratio' else v['TP'],
                             'FP': v['FP'] / trad_divider, 'FN': v['FN'] / trad_divider}
        elif mode == 'fair' or mode == 'weighted':
            for k, v in results['per_label'][mode].items():
                output[k] = {# fair/weighted scores
                             'precision': v['Prec'], 'recall': v['Rec'], 'f1': v['F1'],

                             # traditional scores
                             'trad_prec': results['per_label']['traditional'][k]['Prec'],
                             'trad_rec': results['per_label']['traditional'][k]['Rec'],
                             'trad_f1': results['per_label']['traditional'][k]['F1'],

                             # fair/weighted errors
                             'TP': v['TP'] / fair_divider if error_format == 'entity_ratio' else v['TP'],
                             'FP': v['FP'] / fair_divider, 'FN': v['FN'] / fair_divider,
                             'LE': v['LE'] / fair_divider, 'BE': v['BE'] / fair_divider, 'LBE': v['LBE'] / fair_divider}

        # append overall scores
        output['overall_precision'] = results['overall'][mode]['Prec']
        output['overall_recall'] = results['overall'][mode]['Rec']
        output['overall_f1'] = results['overall'][mode]['F1']

        # append overall error counts (and trad scores if mode is fair)
        if mode == 'traditional':
            output['TP'] = results['overall'][mode]['TP'] / trad_divider if error_format == 'entity_ratio' else \
            results['overall'][mode]['TP']
            output['FP'] = results['overall'][mode]['FP'] / trad_divider
            output['FN'] = results['overall'][mode]['FN'] / trad_divider
        elif mode == 'fair' or 'weighted':
            output['overall_trad_prec'] = results['overall']['traditional']['Prec']
            output['overall_trad_rec'] = results['overall']['traditional']['Rec']
            output['overall_trad_f1'] = results['overall']['traditional']['F1']
            output['TP'] = results['overall'][mode]['TP'] / fair_divider if error_format == 'entity_ratio' else \
            results['overall'][mode]['TP']
            output['FP'] = results['overall'][mode]['FP'] / fair_divider
            output['FN'] = results['overall'][mode]['FN'] / fair_divider
            output['LE'] = results['overall'][mode]['LE'] / fair_divider
            output['BE'] = results['overall'][mode]['BE'] / fair_divider
            output['LBE'] = results['overall'][mode]['LBE'] / fair_divider

        return output


def seq_to_fair(seq_sentences):
    "Transforms input annotated sentences from seqeval span format to FairEval span format"
    out = []
    for seq_sentence in seq_sentences:
        sentence = []
        for entity in seq_sentence:
            span = str(entity).replace('(', '').replace(')', '').replace(' ', '').split(',')
            span = span[1:]
            span[-1] = int(span[-1]) - 1
            span[1] = int(span[1])
            span.append({i for i in range(span[1], span[2] + 1)})
            sentence.append(span)
        out.append(sentence)
    return out