File size: 8,046 Bytes
8312ddd d28c822 3cf3c0d 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 cfb7ff1 4d94df5 3a99d61 4d94df5 3a99d61 4d94df5 67b1d32 4d94df5 3a99d61 4d94df5 8312ddd 4d94df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import cv2
import numpy as np
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
from datetime import datetime
class BloodCellAnalyzer:
def __init__(self):
# Adjusted parameters for the specific image characteristics
self.min_rbc_area = 400
self.max_rbc_area = 2000
self.min_wbc_area = 500
self.max_wbc_area = 3000
self.min_circularity = 0.75
def detect_cells(self, image):
"""Detect both red and white blood cells using color-based segmentation."""
if image is None:
return None, [], None
# Convert to RGB if grayscale
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
# Convert to different color spaces
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
# Red blood cell detection (red color range)
lower_red1 = np.array([0, 50, 50])
upper_red1 = np.array([10, 255, 255])
lower_red2 = np.array([160, 50, 50])
upper_red2 = np.array([180, 255, 255])
red_mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
red_mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
red_mask = cv2.bitwise_or(red_mask1, red_mask2)
# White blood cell detection (blue color range)
lower_blue = np.array([90, 50, 50])
upper_blue = np.array([130, 255, 255])
blue_mask = cv2.inRange(hsv, lower_blue, upper_blue)
# Enhance masks
kernel = np.ones((3,3), np.uint8)
red_mask = cv2.morphologyEx(red_mask, cv2.MORPH_OPEN, kernel, iterations=1)
red_mask = cv2.morphologyEx(red_mask, cv2.MORPH_CLOSE, kernel, iterations=1)
blue_mask = cv2.morphologyEx(blue_mask, cv2.MORPH_OPEN, kernel, iterations=1)
blue_mask = cv2.morphologyEx(blue_mask, cv2.MORPH_CLOSE, kernel, iterations=1)
# Find contours for both cell types
rbc_contours, _ = cv2.findContours(red_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
wbc_contours, _ = cv2.findContours(blue_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cells = []
valid_contours = []
# Process RBCs
for i, contour in enumerate(rbc_contours):
area = cv2.contourArea(contour)
perimeter = cv2.arcLength(contour, True)
circularity = 4 * np.pi * area / (perimeter * perimeter) if perimeter > 0 else 0
if (self.min_rbc_area < area < self.max_rbc_area and
circularity > self.min_circularity):
M = cv2.moments(contour)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
cells.append({
'label': len(valid_contours) + 1,
'type': 'RBC',
'area': area,
'circularity': circularity,
'centroid_x': cx,
'centroid_y': cy
})
valid_contours.append(contour)
# Process WBCs
for i, contour in enumerate(wbc_contours):
area = cv2.contourArea(contour)
perimeter = cv2.arcLength(contour, True)
circularity = 4 * np.pi * area / (perimeter * perimeter) if perimeter > 0 else 0
if (self.min_wbc_area < area < self.max_wbc_area):
M = cv2.moments(contour)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
cells.append({
'label': len(valid_contours) + 1,
'type': 'WBC',
'area': area,
'circularity': circularity,
'centroid_x': cx,
'centroid_y': cy
})
valid_contours.append(contour)
return valid_contours, cells, red_mask
def analyze_image(self, image):
"""Analyze the blood cell image and generate visualizations."""
if image is None:
return None, None, None, None
# Detect cells
contours, cells, mask = self.detect_cells(image)
vis_img = image.copy()
# Draw detections
for cell in cells:
contour = contours[cell['label'] - 1]
color = (0, 0, 255) if cell['type'] == 'RBC' else (255, 0, 0)
cv2.drawContours(vis_img, [contour], -1, color, 2)
cv2.putText(vis_img, f"{cell['type']}",
(cell['centroid_x'], cell['centroid_y']),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
# Create DataFrame
df = pd.DataFrame(cells)
# Generate summary statistics
if not df.empty:
rbc_count = len(df[df['type'] == 'RBC'])
wbc_count = len(df[df['type'] == 'WBC'])
summary_stats = {
'total_rbc': rbc_count,
'total_wbc': wbc_count,
'rbc_avg_size': df[df['type'] == 'RBC']['area'].mean() if rbc_count > 0 else 0,
'wbc_avg_size': df[df['type'] == 'WBC']['area'].mean() if wbc_count > 0 else 0,
}
# Add summary stats to DataFrame
for k, v in summary_stats.items():
df[k] = v
# Generate visualization
fig = self.generate_analysis_plots(df)
return vis_img, mask, fig, df
def generate_analysis_plots(self, df):
"""Generate analysis plots for the detected cells."""
if df.empty:
return None
plt.style.use('dark_background')
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
# Cell count by type
cell_counts = df['type'].value_counts()
axes[0, 0].bar(cell_counts.index, cell_counts.values, color=['red', 'blue'])
axes[0, 0].set_title('Cell Count by Type')
# Size distribution
for cell_type, color in zip(['RBC', 'WBC'], ['red', 'blue']):
if len(df[df['type'] == cell_type]) > 0:
axes[0, 1].hist(df[df['type'] == cell_type]['area'],
bins=20, alpha=0.5, color=color, label=cell_type)
axes[0, 1].set_title('Cell Size Distribution')
axes[0, 1].legend()
# Circularity by type
for cell_type, color in zip(['RBC', 'WBC'], ['red', 'blue']):
cell_data = df[df['type'] == cell_type]
if len(cell_data) > 0:
axes[1, 0].scatter(cell_data['area'], cell_data['circularity'],
c=color, label=cell_type, alpha=0.6)
axes[1, 0].set_title('Area vs Circularity')
axes[1, 0].legend()
# Spatial distribution
for cell_type, color in zip(['RBC', 'WBC'], ['red', 'blue']):
cell_data = df[df['type'] == cell_type]
if len(cell_data) > 0:
axes[1, 1].scatter(cell_data['centroid_x'], cell_data['centroid_y'],
c=color, label=cell_type, alpha=0.6)
axes[1, 1].set_title('Spatial Distribution')
axes[1, 1].legend()
plt.tight_layout()
return fig
# Create Gradio interface
analyzer = BloodCellAnalyzer()
demo = gr.Interface(
fn=analyzer.analyze_image,
inputs=gr.Image(type="numpy"),
outputs=[
gr.Image(label="Detected Cells"),
gr.Image(label="Segmentation Mask"),
gr.Plot(label="Analysis Plots"),
gr.DataFrame(label="Cell Data")
],
title="Blood Cell Analysis Tool",
description="Upload an image to analyze red and white blood cells."
)
if __name__ == "__main__":
demo.launch() |