File size: 11,013 Bytes
cddc4c2
7276d4c
cddc4c2
7276d4c
 
 
 
1ab2f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7276d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbaff56
7276d4c
 
 
 
 
 
1ab2f15
 
7276d4c
 
 
 
 
 
 
1ab2f15
 
 
 
 
 
 
 
 
 
 
 
 
 
7276d4c
 
 
 
 
 
 
 
 
1ab2f15
 
 
 
7276d4c
 
 
 
 
cddc4c2
 
 
 
 
fee88b4
 
 
 
 
 
 
 
 
 
bbaff56
fee88b4
 
 
 
 
bbaff56
 
 
 
 
fee88b4
 
 
 
 
 
cddc4c2
 
fee88b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cddc4c2
fee88b4
 
 
cddc4c2
 
 
 
 
fee88b4
cddc4c2
 
 
 
fee88b4
cddc4c2
fee88b4
 
 
 
cddc4c2
 
 
 
fee88b4
 
cddc4c2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-5):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.eps = eps

    def forward(self, x):
        variance = x.pow(2).mean(-1, keepdim=True)
        x = x * torch.rsqrt(variance + self.eps)
        return self.weight * x

class LlamaAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.num_kv_heads = config.num_key_value_heads
        self.head_dim = config.hidden_size // config.num_attention_heads
        
        self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False)

    def forward(self, hidden_states, attention_mask=None):
        batch_size, seq_length, _ = hidden_states.size()
        
        q = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim)
        k = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
        v = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
        
        if self.num_kv_heads < self.num_heads:
            k = k.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
            v = v.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
        
        q = q.transpose(1, 2)
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)
        
        attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
        
        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask
            
        attention_probs = F.softmax(attention_scores, dim=-1)
        context = torch.matmul(attention_probs, v)
        
        context = context.transpose(1, 2).contiguous()
        context = context.view(batch_size, seq_length, -1)
        
        return self.o_proj(context)

class LlamaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
        self.act_fn = nn.SiLU()

    def forward(self, x):
        gate = self.act_fn(self.gate_proj(x))
        up = self.up_proj(x)
        return self.down_proj(gate * up)

class LlamaDecoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self_attn = LlamaAttention(config)
        self.mlp = LlamaMLP(config)
        self.input_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)

    def forward(self, hidden_states, attention_mask=None):
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(hidden_states, attention_mask)
        hidden_states = residual + hidden_states
        
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        
        return hidden_states

class SmolLM2Config(PretrainedConfig):
    model_type = "smollm2"
    
    def __init__(
        self,
        vocab_size=49152,
        hidden_size=576,
        intermediate_size=1536,
        num_hidden_layers=30,
        num_attention_heads=9,
        num_key_value_heads=3,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.041666666666666664,
        rms_norm_eps=1e-5,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=0,
        eos_token_id=0,
        tie_word_embeddings=True,
        rope_theta=10000.0,
        **kwargs
    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs
        )

class SmolLM2ForCausalLM(PreTrainedModel):
    config_class = SmolLM2Config
    _no_split_modules = ["LlamaDecoderLayer"]
    
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        
        if config.tie_word_embeddings:
            self.lm_head.weight = self.embed_tokens.weight
            
    def forward(self, input_ids, attention_mask=None, labels=None):
        hidden_states = self.embed_tokens(input_ids)
        
        # Create causal attention mask if none provided
        if attention_mask is None:
            attention_mask = torch.triu(
                torch.ones((input_ids.size(1), input_ids.size(1)), dtype=torch.bool, device=input_ids.device),
                diagonal=1
            )
            attention_mask = attention_mask.unsqueeze(0).unsqueeze(0)
            attention_mask = attention_mask * -1e4
        
        for layer in self.layers:
            hidden_states = layer(hidden_states, attention_mask)
            
        hidden_states = self.norm(hidden_states)
        logits = self.lm_head(hidden_states)
        
        loss = None
        if labels is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
            
        return logits if loss is None else (loss, logits)

    def prepare_inputs_for_generation(self, input_ids, **kwargs):
        return {
            "input_ids": input_ids,
            "attention_mask": kwargs.get("attention_mask", None)
        }

# Register the model architecture
from transformers import AutoConfig, AutoModelForCausalLM
AutoConfig.register("smollm2", SmolLM2Config)
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)

# Load model and tokenizer
model_id = "jatingocodeo/SmolLM2"

def load_model():
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        # Ensure the tokenizer has the necessary special tokens
        special_tokens = {
            'pad_token': '[PAD]',
            'eos_token': '</s>',
            'bos_token': '<s>'
        }
        tokenizer.add_special_tokens(special_tokens)
        
        # Load model without device_map
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch.float16,
            pad_token_id=tokenizer.pad_token_id
        )
        
        # Move model to device manually
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = model.to(device)
        
        # Resize token embeddings to match new tokenizer
        model.resize_token_embeddings(len(tokenizer))
        return model, tokenizer
    except Exception as e:
        print(f"Error loading model: {str(e)}")
        raise

def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
    try:
        # Load model and tokenizer (caching them for subsequent calls)
        if not hasattr(generate_text, "model"):
            generate_text.model, generate_text.tokenizer = load_model()
        
        # Ensure the prompt is not empty
        if not prompt.strip():
            return "Please enter a prompt."
        
        # Add BOS token if needed
        if not prompt.startswith(generate_text.tokenizer.bos_token):
            prompt = generate_text.tokenizer.bos_token + prompt
        
        # Encode the prompt
        input_ids = generate_text.tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
        input_ids = input_ids.to(generate_text.model.device)
        
        # Generate text
        with torch.no_grad():
            output_ids = generate_text.model.generate(
                input_ids,
                max_length=min(max_length + len(input_ids[0]), 2048),  # Respect model's max length
                temperature=temperature,
                top_k=top_k,
                do_sample=True,
                pad_token_id=generate_text.tokenizer.pad_token_id,
                eos_token_id=generate_text.tokenizer.eos_token_id,
                num_return_sequences=1
            )
        
        # Decode and return the generated text
        generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True)
        return generated_text.strip()
    
    except Exception as e:
        print(f"Error during generation: {str(e)}")
        return f"An error occurred: {str(e)}"

# Create Gradio interface
iface = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
        gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
    ],
    outputs=gr.Textbox(label="Generated Text", lines=5),
    title="SmolLM2 Text Generator",
    description="""Generate text using the fine-tuned SmolLM2 model.
    - Max Length: Controls the length of generated text
    - Temperature: Controls randomness (higher = more creative)
    - Top K: Controls diversity of word choices""",
    examples=[
        ["Once upon a time", 100, 0.7, 50],
        ["The quick brown fox", 150, 0.8, 40],
        ["In a galaxy far far away", 200, 0.9, 30],
    ],
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch()