File size: 22,471 Bytes
4b4bf72 6bd6b44 2b884bf 9402b4b 2b884bf 8550d55 2b884bf ea6bffd 2b884bf ea6bffd 2b884bf b24f0de 2b884bf 6db7d4a 2b884bf 6db7d4a b24f0de 2b884bf b24f0de 2b884bf 24d8365 2b884bf ea6bffd af4b612 2b884bf ea6bffd 2b884bf e9be7bd 83b714e 2b884bf ecd2a8d 2b884bf ecd2a8d 2b884bf ecd2a8d 2b884bf ecd2a8d 2b884bf 9f6b87d 2b884bf 463ab9c 2b884bf ea6bffd 2b884bf ea6bffd 5835cbd 2b884bf ea6bffd c63ad9d 2b884bf 5835cbd ea6bffd 2b884bf ea6bffd 2b884bf e08777b 4e1219c a0b6552 f3a40fd 2b884bf a0b6552 97813a4 85b272d 4e1219c 85b272d a0b6552 e08777b 4e1219c a0b6552 e08777b a0b6552 e08777b a0b6552 e08777b a0b6552 e08777b a0b6552 85b272d a0b6552 6b0bce1 a0b6552 14c93da 2b884bf 6b0bce1 2b884bf 6b0bce1 2b884bf 3f1e4b2 d0f4851 3f1e4b2 6b0bce1 3f1e4b2 6b0bce1 3f1e4b2 d0f4851 c0f831c 3f1e4b2 d0f4851 3f1e4b2 d0f4851 3f1e4b2 2b884bf d0f4851 2b884bf 3f1e4b2 d0f4851 3f1e4b2 d0f4851 3f1e4b2 d0f4851 188a8f6 2b884bf bf19518 64fef51 2b884bf 4ec5d16 2b884bf 89e32b2 2b884bf b2576ed 2b884bf 85b272d 2b884bf 81e4873 2b884bf 85b272d 2b884bf 81e4873 2b884bf 5835cbd 2b884bf 89e32b2 2b884bf 4e1219c 2b884bf 2ed6513 a0b6552 5507d34 f3a40fd 85b272d a0b6552 2ed6513 a0b6552 2ed6513 97813a4 2ed6513 85b272d a0b6552 2ed6513 a0b6552 2ed6513 a0b6552 2ed6513 a0b6552 2ed6513 5507d34 a0b6552 5507d34 a0b6552 2ed6513 a0b6552 2ed6513 a0b6552 2ed6513 a0b6552 2ed6513 a0b6552 2ed6513 a0b6552 4e1219c 2b884bf 85b272d fc27bac 2b884bf 5835cbd fc27bac 2b884bf fc27bac 2b884bf fc27bac cebfb12 fc27bac 2b884bf fc27bac 2b884bf 85b272d 2b884bf cebfb12 2b884bf d3b2f33 ee46598 d0f4851 ee46598 d0f4851 ee46598 d0f4851 d3b2f33 ee46598 d0f4851 d3b2f33 ee46598 d3b2f33 d0f4851 ee46598 d0f4851 d3b2f33 188a8f6 ee46598 188a8f6 d3b2f33 ee46598 188a8f6 d3b2f33 ee46598 2b884bf 85b272d fc27bac 2b884bf 5507d34 fc27bac 2b884bf 5507d34 fc27bac 5507d34 fc27bac 5507d34 fc27bac 5507d34 fc27bac 5507d34 2b884bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import streamlit as st
import pandas as pd
import numpy as np
import torch
import networkx as nx
import plotly.express as px
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.signal import savgol_filter
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from wordcloud import WordCloud
import spacy
st.set_page_config(page_title="Advanced Political Speech Analysis", page_icon="🗣️", layout="wide")
# Advanced NLP Libraries
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
pipeline,
AutoModelForTokenClassification,
RobertaTokenizer,
RobertaForSequenceClassification
)
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from textstat import flesch_reading_ease, flesch_kincaid_grade
# Download necessary NLTK resources
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('punkt_tab', quiet=True)
# Load spaCy model (requires separate installation)
try:
nlp = spacy.load('en_core_web_lg')
except:
st.error("Please install spaCy and en_core_web_lg model: \n"
"pip install spacy\n"
"python -m spacy download en_core_web_lg")
# Constants and Configurations
MORAL_FOUNDATIONS = {
'care': 'Care/Harm',
'fairness': 'Fairness/Cheating',
'loyalty': 'Loyalty/Betrayal',
'authority': 'Authority/Subversion',
'sanctity': 'Sanctity/Degradation'
}
RHETORICAL_DEVICES = {
'analogy': ['like', 'as', 'similar to'],
'repetition': ['repetitive', 'recurring'],
'metaphor': ['as if', 'like', 'represents'],
'hyperbole': ['always', 'never', 'absolute'],
'rhetorical_question': ['?']
}
class SpeechAnalyzer:
def __init__(self):
# Load MoralFoundations model
self.moral_model_path = "MMADS/MoralFoundationsClassifier"
self.moral_tokenizer = RobertaTokenizer.from_pretrained(self.moral_model_path)
self.moral_model = RobertaForSequenceClassification.from_pretrained(self.moral_model_path)
# Define label names directly
self.label_names = ['care', 'fairness', 'loyalty', 'authority', 'sanctity']
# Other pipelines remain the same
self.sentiment_pipeline = pipeline("sentiment-analysis")
self.ner_tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
self.ner_model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
self.ner_pipeline = pipeline("ner", model=self.ner_model, tokenizer=self.ner_tokenizer)
def split_text(self, text, max_length=256, overlap=50):
"""Split long text into overlapping segments"""
words = text.split()
segments = []
current_segment = []
current_length = 0
for word in words:
if current_length + len(word.split()) > max_length:
segments.append(' '.join(current_segment))
# Use the overlap parameter from the method arguments
current_segment = current_segment[-overlap:] + [word]
current_length = len(' '.join(current_segment).split())
else:
current_segment.append(word)
current_length = len(' '.join(current_segment).split())
if current_segment:
segments.append(' '.join(current_segment))
return segments
def analyze_moral_foundations(self, text):
"""Analyze moral foundations using the RoBERTa-based classifier"""
segments = self.split_text(text)
foundation_scores = {
'care': [], 'fairness': [], 'loyalty': [],
'authority': [], 'sanctity': []
}
for segment in segments:
inputs = self.moral_tokenizer(segment, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = self.moral_model(**inputs)
probabilities = torch.softmax(outputs.logits, dim=1)
for idx, label in enumerate(self.label_names):
foundation = label.lower()
if foundation in foundation_scores:
foundation_scores[foundation].append(probabilities[0][idx].item())
# Average the scores across segments
aggregated_scores = {
foundation: np.mean(scores) for foundation, scores in foundation_scores.items()
}
return aggregated_scores
def analyze_emotional_trajectory(self, text, window_size=5):
"""Enhanced emotional trajectory analysis with basic emotions"""
segments = self.split_text(text, max_length=512)
sentiment_scores = []
basic_emotions = []
# Add emotion classifier pipeline
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
for segment in segments:
sentences = nltk.sent_tokenize(segment)
batch_size = 64
segment_scores = []
segment_emotions = []
for i in range(0, len(sentences), batch_size):
batch = sentences[i:i+batch_size]
batch = [sent[:512] for sent in batch]
batch = [sent if sent.strip() else "." for sent in batch]
# Get sentiment scores
try:
results = self.sentiment_pipeline(batch)
batch_scores = []
for result in results:
score = result['score']
# Enhanced score scaling for better visualization
if result['label'] == 'POSITIVE':
score = 0.5 + (score * 0.5) # Scale from 0.5 to 1.0
else:
score = 0.5 - (score * 0.5) # Scale from 0.0 to 0.5
batch_scores.append(score)
segment_scores.extend(batch_scores)
# Get emotion classifications
emotion_results = emotion_classifier(batch)
batch_emotions = []
for result in emotion_results:
# Get the dominant emotion
dominant_emotion = max(result[0], key=lambda x: x['score'])
batch_emotions.append(dominant_emotion['label'])
segment_emotions.extend(batch_emotions)
except Exception as e:
print(f"Batch processing error: {e}")
segment_scores.extend([0.5] * len(batch))
segment_emotions.extend(['neutral'] * len(batch))
sentiment_scores.append(np.mean(segment_scores))
# Get most frequent emotion in segment
if segment_emotions:
basic_emotions.append(max(set(segment_emotions), key=segment_emotions.count))
else:
basic_emotions.append('neutral')
return sentiment_scores, basic_emotions
def detect_named_entities(self, text):
"""Detect named entities in the text"""
entities = self.ner_pipeline(text)
return entities
def extract_key_phrases(self, text, top_n=10):
"""Extract key phrases using TF-IDF"""
vectorizer = TfidfVectorizer(stop_words='english', ngram_range=(1,2))
tfidf_matrix = vectorizer.fit_transform([text])
feature_names = vectorizer.get_feature_names_out()
# Get top phrases by TF-IDF score
sorted_idx = tfidf_matrix.toarray()[0].argsort()[::-1]
top_phrases = [feature_names[i] for i in sorted_idx[:top_n]]
return top_phrases
def calculate_readability(self, text):
"""Calculate readability metrics"""
return {
'Flesch Reading Ease': flesch_reading_ease(text),
'Flesch-Kincaid Grade Level': flesch_kincaid_grade(text)
}
def detect_rhetorical_devices(self, text):
"""Detect rhetorical devices"""
devices_found = {}
for device, markers in RHETORICAL_DEVICES.items():
count = sum(text.lower().count(marker) for marker in markers)
if count > 0:
devices_found[device] = count
return devices_found
def create_semantic_network(self, text, top_n=20, window_size=10, chunk_size=10000):
"""Create semantic network graph with weighted edges"""
# Process text in chunks
chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
# Initialize collections for aggregating results
all_nouns = []
noun_freq = nltk.FreqDist()
# Process each chunk
for chunk in chunks:
doc = nlp(chunk)
chunk_nouns = [token.text.lower() for token in doc if token.pos_ == 'NOUN']
all_nouns.extend(chunk_nouns)
noun_freq.update(chunk_nouns)
# Get top nouns across all chunks
top_nouns = [noun for noun, freq in noun_freq.most_common(top_n)]
# Create graph and co-occurrence matrix
G = nx.Graph()
cooc_matrix = np.zeros((len(top_nouns), len(top_nouns)))
noun_to_idx = {noun: idx for idx, noun in enumerate(top_nouns)}
# Process co-occurrences in chunks
for chunk in chunks:
doc = nlp(chunk)
words = [token.text.lower() for token in doc]
for i in range(len(words)):
window_words = words[max(0, i-window_size):min(len(words), i+window_size)]
for noun1 in top_nouns:
if noun1 in window_words:
for noun2 in top_nouns:
if noun1 != noun2 and noun2 in window_words:
idx1, idx2 = noun_to_idx[noun1], noun_to_idx[noun2]
cooc_matrix[idx1][idx2] += 1
cooc_matrix[idx2][idx1] += 1
# Build network
for noun in top_nouns:
G.add_node(noun, size=noun_freq[noun])
# Add weighted edges
max_weight = np.max(cooc_matrix)
if max_weight > 0: # Prevent division by zero
for i in range(len(top_nouns)):
for j in range(i+1, len(top_nouns)):
weight = cooc_matrix[i][j]
if weight > 0:
G.add_edge(top_nouns[i], top_nouns[j],
weight=weight,
width=3 * (weight/max_weight))
# Calculate and store layout
pos = nx.spring_layout(G, k=1, iterations=50)
for node in G.nodes():
G.nodes[node]['pos'] = pos[node]
return G
def main():
st.title("🗣️ Political Text Analysis Toolkit")
# Initialize analyzer
analyzer = SpeechAnalyzer()
# File upload
uploaded_file = st.file_uploader("Upload Political Speech", type=['txt', 'docx', 'pdf'])
if uploaded_file is not None:
# Read file (similar to previous implementation)
if uploaded_file.name.endswith('.txt'):
text = uploaded_file.getvalue().decode('utf-8')
elif uploaded_file.name.endswith('.docx'):
import docx
doc = docx.Document(uploaded_file)
text = '\n'.join([paragraph.text for paragraph in doc.paragraphs])
elif uploaded_file.name.endswith('.pdf'):
import PyPDF2
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text = ' '.join([page.extract_text() for page in pdf_reader.pages])
# Create tabs for different analyses
progress_bar = st.progress(0)
status_text = st.empty()
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"Moral Foundations",
"Emotional Analysis",
"Linguistic Insights",
"Semantic Network",
"Advanced NLP"
])
with tab1:
status_text.text('Analyzing Moral Foundations...')
progress_bar.progress(20)
st.subheader("Moral Foundations Analysis")
moral_scores = analyzer.analyze_moral_foundations(text)
# Plotly bar chart
moral_df = pd.DataFrame.from_dict(moral_scores, orient='index', columns=['Score'])
moral_df.index.name = 'Moral Foundation'
moral_df = moral_df.reset_index()
fig = px.bar(
moral_df,
x='Moral Foundation',
y='Score',
title='Moral Foundations Breakdown',
color='Moral Foundation'
)
st.plotly_chart(fig)
# Detailed insights
for foundation, score in moral_scores.items():
st.write(f"**{MORAL_FOUNDATIONS[foundation]}**: {score:.2%}")
with tab2:
st.subheader("Speech Trajectory Analysis")
col1, col2, col3 = st.columns(3)
segments = analyzer.split_text(text, max_length=512)
num_segments = len(segments)
segment_labels = [f"{i+1}" for i in range(num_segments)]
sentiment_scores, basic_emotions = analyzer.analyze_emotional_trajectory(text)
with col1:
st.write("### Sentiment Flow")
sentiment_fig = go.Figure(data=go.Scatter(
x=segment_labels,
y=sentiment_scores,
mode='lines+markers',
line=dict(color='#1f77b4', width=3),
marker=dict(
size=8,
color=['#ff0000' if score < 0.4 else '#00ff00' if score > 0.6 else '#888888' for score in sentiment_scores],
symbol='circle'
)
))
sentiment_fig.update_layout(
title='Sentiment Throughout Speech',
xaxis_title='Speech Segments',
yaxis_title='Sentiment',
yaxis=dict(
ticktext=['Very Negative', 'Negative', 'Neutral', 'Positive', 'Very Positive'],
tickvals=[0, 0.25, 0.5, 0.75, 1],
range=[0, 1],
gridcolor='lightgray'
),
plot_bgcolor='white'
)
st.plotly_chart(sentiment_fig)
# Rest of the code remains the same for col2 (Moral Foundations)
with col3:
st.write("### Basic Emotions")
emotions_df = pd.DataFrame({
'Segment': segment_labels,
'Emotion': basic_emotions
})
emotions_fig = px.bar(
emotions_df,
x='Segment',
y='Emotion',
color='Emotion',
title='Basic Emotions Flow',
category_orders={'Emotion': ['joy', 'sadness', 'anger', 'fear', 'surprise', 'neutral']}
)
emotions_fig.update_layout(
xaxis_title='Speech Segments',
yaxis_title='Emotion',
showlegend=True,
plot_bgcolor='white'
)
st.plotly_chart(emotions_fig)
with tab3:
status_text.text('Analyzing Linguistic Features...')
progress_bar.progress(60)
st.subheader("Linguistic Analysis")
readability = analyzer.calculate_readability(text)
# Readability metrics with context
col1, col2 = st.columns(2)
with col1:
score = readability['Flesch Reading Ease']
interpretation = "Complex" if score < 50 else "Standard" if score < 70 else "Easy"
st.metric(
label="Reading Ease",
value=f"{score:.1f}/100",
delta=interpretation,
delta_color="normal"
)
with col2:
grade = readability['Flesch-Kincaid Grade Level']
st.metric(
label="Education Level",
value=f"Grade {grade:.1f}",
delta="Years of Education",
delta_color="normal"
)
# Enhanced key phrases display
st.subheader("Key Topics and Themes")
key_phrases = analyzer.extract_key_phrases(text)
# Create columns for better phrase organization
cols = st.columns(3)
for idx, phrase in enumerate(key_phrases):
col_idx = idx % 3
cols[col_idx].markdown(
f"""<div style='
background-color: rgba(31, 119, 180, {0.9 - idx*0.05});
color: white;
padding: 8px 15px;
margin: 5px 0;
border-radius: 15px;
text-align: center;
'>{phrase}</div>""",
unsafe_allow_html=True
)
with tab4:
status_text.text('Building Semantic Network...')
progress_bar.progress(80)
st.subheader("Semantic Network")
semantic_graph = analyzer.create_semantic_network(text)
network_fig = go.Figure()
# Add edges with enhanced visual encoding
for edge in semantic_graph.edges():
x0, y0 = semantic_graph.nodes[edge[0]]['pos']
x1, y1 = semantic_graph.nodes[edge[1]]['pos']
weight = semantic_graph.edges[edge]['weight']
max_weight = max(d['weight'] for _, _, d in semantic_graph.edges(data=True))
# Normalize weight for visual encoding
normalized_weight = weight / max_weight
# Enhanced width scaling (more pronounced differences)
width = 2 + (normalized_weight * 8)
# Color gradient from light to dark based on weight
color = f'rgba(31, 119, 180, {0.3 + normalized_weight * 0.7})'
network_fig.add_trace(go.Scatter(
x=[x0, x1, None],
y=[y0, y1, None],
mode='lines',
line=dict(
width=width,
color=color
),
hoverinfo='text',
hovertext=f'Relationship strength: {weight:.2f}'
))
# Enhanced nodes with better visibility
for node in semantic_graph.nodes():
x, y = semantic_graph.nodes[node]['pos']
size = semantic_graph.nodes[node]['size']
network_fig.add_trace(go.Scatter(
x=[x],
y=[y],
mode='markers+text',
marker=dict(
size=15 + size/2, # Increased base size
color='#ffffff',
line=dict(width=2, color='#1f77b4'),
symbol='circle'
),
text=[node],
textposition="top center",
textfont=dict(size=12, color='black'),
hoverinfo='text',
hovertext=f'Term: {node}<br>Frequency: {size}'
))
network_fig.update_layout(
showlegend=False,
hovermode='closest',
margin=dict(b=20, l=20, r=20, t=20),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor='white',
width=800,
height=600
)
st.plotly_chart(network_fig, use_container_width=True)
with tab5:
status_text.text('Extracting Named Entities...')
progress_bar.progress(100)
st.subheader("Named Entity Recognition")
named_entities = analyzer.detect_named_entities(text)
# Process entities
entities_df = pd.DataFrame(named_entities)
# Map entity types to friendly names
type_mapping = {
'B-PER': 'Person',
'I-PER': 'Person',
'B-ORG': 'Organization',
'I-ORG': 'Organization',
'B-LOC': 'Location',
'I-LOC': 'Location',
'B-MISC': 'Other',
'I-MISC': 'Other'
}
# Clean and transform the data
display_df = pd.DataFrame({
'Term': entities_df['word'],
'Category': entities_df['entity'].map(type_mapping),
'Confidence': entities_df['score'].apply(lambda x: f"{x*100:.1f}%")
})
# Group similar entities
grouped_df = display_df.groupby('Category').agg({
'Term': lambda x: ', '.join(set(x)),
'Confidence': 'count'
}).reset_index()
# Display results in an organized way
for category in grouped_df['Category'].unique():
category_data = grouped_df[grouped_df['Category'] == category]
st.write(f"### {category}")
st.markdown(f"**Found**: {category_data['Term'].iloc[0]}")
if __name__ == "__main__":
main() |