Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from transformers import T5Tokenizer, T5ForConditionalGeneration, pipeline | |
from bertopic import BERTopic | |
import torch | |
# Initialize ARAT5 model and tokenizer for topic modeling | |
tokenizer = T5Tokenizer.from_pretrained("UBC-NLP/araT5-base") | |
model = T5ForConditionalGeneration.from_pretrained("UBC-NLP/araT5-base") | |
# Emotion classification pipeline for Arabic (use an Arabic emotion classification model) | |
emotion_classifier = pipeline("text-classification", model="d0r13n/ara-bert-base-arabic-emotion") | |
# Function to get embeddings from ARAT5 for topic modeling | |
def generate_embeddings(texts): | |
# Tokenize the Arabic text for ARAT5 | |
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
with torch.no_grad(): | |
# Use ARAT5 to generate embeddings | |
outputs = model.encoder(input_ids=inputs['input_ids']) | |
# Extract the embeddings (mean of hidden states for simplicity) | |
return outputs.last_hidden_state.mean(dim=1).numpy() | |
# Function to process the CSV file and return emotion and topic model | |
def process_file(uploaded_file): | |
# Load CSV | |
df = pd.read_csv(uploaded_file) | |
# Display basic info about the CSV | |
st.write("CSV Loaded Successfully!") | |
st.write(f"Data Preview: {df.head()}") | |
# Ensure 'date' column is in datetime format and extract the year | |
df['date'] = pd.to_datetime(df['date'], errors='coerce') # Replace 'date' with your actual column name | |
df['year'] = df['date'].dt.year | |
# Modify this to use the 'poem' column that contains the Arabic poems | |
texts = df['poem'].dropna().tolist() # Replace 'poem' with your actual column name | |
# Emotion Classification: Classify emotions for each poem (Arabic) | |
emotions = [emotion_classifier(text)[0]['label'] for text in texts] | |
df['emotion'] = emotions | |
# Topic Modeling using ARAT5 embeddings | |
embeddings = generate_embeddings(texts) | |
topic_model = BERTopic() | |
topics, _ = topic_model.fit_transform(embeddings) | |
df['topic'] = topics | |
# Return the processed dataframe | |
return df | |
# Streamlit App | |
st.title("Arabic Poem Topic Modeling & Emotion Classification with ARAT5") | |
st.write("Upload a CSV file to perform topic modeling and emotion classification on Arabic poems.") | |
# File upload widget | |
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"]) | |
# If file is uploaded, process and display results | |
if uploaded_file is not None: | |
result_df = process_file(uploaded_file) | |
# Show date selection widgets | |
st.write("### Filter by Date Range") | |
start_date = st.date_input("Start Date", value=pd.to_datetime(result_df['date'].min())) | |
end_date = st.date_input("End Date", value=pd.to_datetime(result_df['date'].max())) | |
# Filter data based on selected date range | |
filtered_df = result_df[(result_df['date'] >= start_date) & (result_df['date'] <= end_date)] | |
# Display filtered data | |
st.write(f"Filtered Data (Poems from {start_date} to {end_date}):") | |
st.write(filtered_df[['poet_name', 'era', 'poem', 'emotion', 'topic', 'date']]) | |
# Create buttons to show different summaries | |
summary_type = st.radio("Select Summary Type:", | |
("Emotion and Topic Summary by Date Range", | |
"Global Emotion and Topic Summary")) | |
# Display the selected summary | |
if summary_type == "Emotion and Topic Summary by Date Range": | |
st.write("Emotion and Topic Summary for Selected Date Range:") | |
# Emotion Distribution in Date Range | |
emotion_counts = filtered_df['emotion'].value_counts() | |
st.write("Emotion Counts in Date Range:") | |
st.write(emotion_counts) | |
# Topic Distribution in Date Range | |
topic_counts = filtered_df['topic'].value_counts() | |
st.write("Topic Counts in Date Range:") | |
st.write(topic_counts) | |
# Visualize emotion distribution over the selected range (optional) | |
st.bar_chart(emotion_counts, use_container_width=True) | |
# Visualize topic distribution over the selected range (optional) | |
st.bar_chart(topic_counts, use_container_width=True) | |
elif summary_type == "Global Emotion and Topic Summary": | |
st.write("Global Emotion and Topic Summary (All Poems):") | |
global_emotion_count = result_df['emotion'].value_counts().to_dict() | |
global_topic_count = result_df['topic'].value_counts().to_dict() | |
st.write(f"Emotion Distribution: {global_emotion_count}") | |
st.write(f"Topic Distribution: {global_topic_count}") | |