File size: 4,691 Bytes
7f96312
2c20468
0dda7f4
7b3bf1d
 
812f60c
 
7b3bf1d
2c20468
0dda7f4
2c20468
 
 
 
 
 
 
0dda7f4
2c20468
 
 
 
 
 
 
 
812f60c
7b3bf1d
812f60c
7b3bf1d
 
 
 
 
812f60c
0dda7f4
812f60c
2c20468
 
 
812f60c
2c20468
 
812f60c
2c20468
 
 
812f60c
2c20468
 
 
812f60c
2c20468
812f60c
2c20468
812f60c
 
2c20468
 
 
 
 
 
 
 
 
 
7b3bf1d
2c20468
 
812f60c
2c20468
 
812f60c
2c20468
 
812f60c
2c20468
812f60c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c20468
 
812f60c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import gradio as gr
import os
from langchain.vectorstores.faiss import FAISS  # Direktimport
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub

list_llm = ["google/flan-t5-small", "distilbert-base-uncased"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

def load_doc(list_file_path):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

def create_db(splits):
    embeddings = HuggingFaceEmbeddings()
    vectordb = FAISS.from_documents(splits, embeddings)
    return vectordb

def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
    llm = HuggingFaceHub(
        repo_id=llm_model,
        model_kwargs={
            "temperature": temperature,
            "max_length": max_tokens,
            "top_k": top_k,
        }
    )
    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    retriever = vector_db.as_retriever()
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False
    )
    return qa_chain

def initialize_database(list_file_obj):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    doc_splits = load_doc(list_file_path)
    vector_db = create_db(doc_splits)
    return vector_db, "Datenbank erfolgreich erstellt!"

def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
    llm_name = list_llm[llm_option]
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
    return qa_chain, "LLM erfolgreich initialisiert! Chatbot ist bereit."

def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history

def demo():
    with gr.Blocks() as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        gr.HTML("<center><h1>RAG PDF Chatbot</h1></center>")
        with gr.Row():
            with gr.Column():
                gr.Markdown("### Schritt 1: Lade PDF-Dokument hoch")
                document = gr.Files(height=300, file_count="multiple", file_types=[".pdf"], interactive=True)
                db_btn = gr.Button("Erstelle Vektordatenbank")
                db_progress = gr.Textbox(value="Nicht initialisiert", show_label=False)
                gr.Markdown("### Schritt 2: Wähle LLM und Einstellungen")
                llm_btn = gr.Radio(list_llm_simple, label="Verfügbare Modelle", value=list_llm_simple[0], type="index")
                slider_temperature = gr.Slider(0.01, 1.0, value=0.5, step=0.1, label="Temperature")
                slider_maxtokens = gr.Slider(64, 512, value=256, step=64, label="Max Tokens")
                slider_topk = gr.Slider(1, 10, value=3, step=1, label="Top-k")
                qachain_btn = gr.Button("Initialisiere QA-Chatbot")
                llm_progress = gr.Textbox(value="Nicht initialisiert", show_label=False)

            with gr.Column():
                gr.Markdown("### Schritt 3: Stelle Fragen an dein Dokument")
                chatbot = gr.Chatbot(height=400, type="messages")
                msg = gr.Textbox(placeholder="Frage stellen...")
                submit_btn = gr.Button("Absenden")

        db_btn.click(initialize_database, [document], [vector_db, db_progress])
        qachain_btn.click(initialize_LLM, [llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], [qa_chain, llm_progress])
        msg.submit(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
        submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
    demo.launch(debug=True)

if __name__ == "__main__":
    demo()