Spaces:
Sleeping
Sleeping
File size: 22,397 Bytes
f03aa8c 864cff1 f03aa8c 864cff1 f03aa8c 864cff1 f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db b1a69de 80820db f03aa8c 80820db f03aa8c 80820db c6ce978 f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db f03aa8c 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 19192aa 80820db 864cff1 12461ea 80820db 864cff1 80820db 864cff1 f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db c6ce978 f03aa8c 80820db f03aa8c 80820db f03aa8c 864cff1 80820db 864cff1 80820db 864cff1 f03aa8c 864cff1 f03aa8c 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db be32e3b 2cec71e 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 f03aa8c 80820db c6ce978 80820db 864cff1 511ed4b 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 80820db 864cff1 f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db f03aa8c 80820db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
import os
import tqdm
import time
import glob
import wandb
from traceback import print_exc
import streamlit as st
import pandas as pd
import bittensor as bt
import plotly.express as px
# TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
# TODO: Store relevant wandb data in a database for faster access
MIN_STEPS = 10 # minimum number of steps in wandb run in order to be worth analyzing
NETUID = 1
BASE_PATH = "macrocosmos/prompting-validators"
NETWORK = "finney"
KEYS = [
"_step",
"_timestamp",
"task",
"query",
"reference",
"challenge",
"topic",
"subtopic",
]
ABBREV_CHARS = 8
ENTITY_CHOICES = ("identity", "hotkey", "coldkey")
LOCAL_WANDB_PATH = "./data/wandb"
USERNAME = "taostats"
# Initialize wandb with anonymous login
wandb.login(anonymous="must")
api = wandb.Api(timeout=600)
IDENTITIES = {
"5F4tQyWrhfGVcNhoqeiNsR6KjD4wMZ2kfhLj4oHYuyHbZAc3": "opentensor",
"5Hddm3iBFD2GLT5ik7LZnT3XJUnRnN8PoeCFgGQgawUVKNm8": "taostats",
"5HEo565WAy4Dbq3Sv271SAi7syBSofyfhhwRNjFNSM2gP9M2": "foundry",
"5HK5tp6t2S59DywmHRWPBVJeJ86T61KjurYqeooqj8sREpeN": "bittensor-guru",
"5FFApaS75bv5pJHfAp2FVLBj9ZaXuFDjEypsaBNc1wCfe52v": "roundtable-21",
"5EhvL1FVkQPpMjZX4MAADcW42i3xPSF1KiCpuaxTYVr28sux": "tao-validator",
"5FKstHjZkh4v3qAMSBa1oJcHCLjxYZ8SNTSz1opTv4hR7gVB": "datura",
"5DvTpiniW9s3APmHRYn8FroUWyfnLtrsid5Mtn5EwMXHN2ed": "first-tensor",
"5HbLYXUBy1snPR8nfioQ7GoA9x76EELzEq9j7F32vWUQHm1x": "tensorplex",
"5CsvRJXuR955WojnGMdok1hbhffZyB4N5ocrv82f3p5A2zVp": "owl-ventures",
"5CXRfP2ekFhe62r7q3vppRajJmGhTi7vwvb2yr79jveZ282w": "rizzo",
"5HNQURvmjjYhTSksi8Wfsw676b4owGwfLR2BFAQzG7H3HhYf": "neural-internet",
}
EXTRACTORS = {
"state": lambda x: x.state,
"run_id": lambda x: x.id,
"run_path": lambda x: os.path.join(BASE_PATH, x.id),
"user": lambda x: x.user.name[:16],
"username": lambda x: x.user.username[:16],
"created_at": lambda x: pd.Timestamp(x.created_at),
"last_event_at": lambda x: pd.Timestamp(x.summary.get("_timestamp"), unit="s"),
# 'netuid': lambda x: x.config.get('netuid'),
# 'mock': lambda x: x.config.get('neuron').get('mock'),
# 'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
# 'timeout': lambda x: x.config.get('neuron').get('timeout'),
# 'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
# 'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),
# This stuff is from the last logged event
"num_steps": lambda x: x.summary.get("_step"),
"runtime": lambda x: x.summary.get("_runtime"),
"query": lambda x: x.summary.get("query"),
"challenge": lambda x: x.summary.get("challenge"),
"reference": lambda x: x.summary.get("reference"),
"completions": lambda x: x.summary.get("completions"),
"version": lambda x: x.tags[0],
"spec_version": lambda x: x.tags[1],
"vali_hotkey": lambda x: x.tags[2],
# 'tasks_selected': lambda x: x.tags[3:],
# System metrics
"disk_read": lambda x: x.system_metrics.get("system.disk.in"),
"disk_write": lambda x: x.system_metrics.get("system.disk.out"),
# Really slow stuff below
# 'started_at': lambda x: x.metadata.get('startedAt'),
# 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'),
# 'commit': lambda x: x.metadata.get('git').get('commit')
}
def get_leaderboard(df, ntop=10, entity_choice="identity"):
df = df.loc[df.validator_permit == False]
df.index = range(df.shape[0])
return df.groupby(entity_choice).I.sum().sort_values().reset_index().tail(ntop)
@st.cache_data()
def get_metagraph(time):
print(f"Loading metagraph with time {time}")
subtensor = bt.subtensor(network=NETWORK)
m = subtensor.metagraph(netuid=NETUID)
meta_cols = [
"I",
"stake",
"trust",
"validator_trust",
"validator_permit",
"C",
"R",
"E",
"dividends",
"last_update",
]
df_m = pd.DataFrame({k: getattr(m, k) for k in meta_cols})
df_m["uid"] = range(m.n.item())
df_m["hotkey"] = list(map(lambda a: a.hotkey, m.axons))
df_m["coldkey"] = list(map(lambda a: a.coldkey, m.axons))
df_m["ip"] = list(map(lambda a: a.ip, m.axons))
df_m["port"] = list(map(lambda a: a.port, m.axons))
df_m["coldkey"] = df_m.coldkey.str[:ABBREV_CHARS]
df_m["hotkey"] = df_m.hotkey.str[:ABBREV_CHARS]
df_m["identity"] = df_m.apply(lambda x: f"{x.hotkey} @ uid {x.uid}", axis=1)
return df_m
@st.cache_data(show_spinner=False)
def load_downloaded_runs(time, cols=KEYS):
list_cols = ["rewards", "uids"]
extra_cols = ["turn"]
df_all = pd.DataFrame()
progress = st.progress(0, text="Loading downloaded data")
paths = glob.glob(os.path.join(LOCAL_WANDB_PATH, "*.parquet"))
for i, path in enumerate(paths):
run_id = path.split("/")[-1].split(".")[0]
frame = pd.read_parquet(path).dropna(subset=cols)
frame._timestamp = frame._timestamp.apply(pd.to_datetime, unit="s")
# handle missing extra cols such as turn which depend on the version of the codebase
found_extra_cols = [c for c in frame.columns if c in extra_cols]
df_long = frame[cols + list_cols + found_extra_cols].explode(list_cols)
prog_msg = f"Downloading data {i/len(paths)*100:.0f}%"
progress.progress(
i / len(paths), text=f"{prog_msg}... **downloading** `{run_id}`"
)
df_all = pd.concat([df_all, df_long.assign(run_id=run_id)], ignore_index=True)
progress.empty()
# Ensure we have consistent naming schema for tasks
task_mapping = {
"date-based question answering": "date_qa",
"question-answering": "qa",
}
df_all["task"] = df_all.task.apply(lambda x: task_mapping.get(x, x))
# Runs which do not have a turn field are imputed to be turn zero (single turn)
df_all["turn"] = df_all.turn.fillna(0)
df_all.sort_values(by=["_timestamp"], inplace=True)
return df_all
@st.cache_data(show_spinner=False)
def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=True):
save_path = "_saved_runs.csv"
filters = {}
df = pd.DataFrame()
# Load the last saved runs so that we only need to update the new ones
if use_cache and os.path.exists(save_path):
df = pd.read_csv(save_path)
df["created_at"] = pd.to_datetime(df["created_at"])
df["last_event_at"] = pd.to_datetime(df["last_event_at"])
timestamp_str = df["last_event_at"].max().isoformat()
filters.update({"updated_at": {"$gte": timestamp_str}})
progress = st.progress(0, text="Loading data")
runs = api.runs(path, filters=filters)
run_data = []
n_events = 0
for i, run in enumerate(tqdm.tqdm(runs, total=len(runs))):
num_steps = run.summary.get("_step", 0)
if num_steps < min_steps:
continue
n_events += num_steps
prog_msg = (
f"Loading data {i/len(runs)*100:.0f}%, (total {n_events:,.0f} events)"
)
progress.progress(
i / len(runs),
text=f"{prog_msg}... **downloading** `{os.path.join(*run.path)}`",
)
if (
"netuid_1" in run.tags
or "netuid_61" in run.tags
or "netuid_102" in run.tags
):
run_data.append(run)
progress.empty()
df_new = pd.DataFrame(
[
{k: func(run) for k, func in EXTRACTORS.items()}
for run in tqdm.tqdm(run_data, total=len(run_data))
]
)
df = pd.concat([df, df_new], ignore_index=True)
# Ensure that the timestamps are timezone aware
if df.last_event_at.dt.tz is None:
df.last_event_at = df.last_event_at.dt.tz_localize("UTC")
if df.created_at.dt.tz is None:
df.created_at = df.created_at.dt.tz_localize("UTC")
df["duration"] = (df.last_event_at - df.created_at).round("s")
df["identity"] = df["vali_hotkey"].map(IDENTITIES).fillna("unknown")
df["vali_hotkey"] = df["vali_hotkey"].str[:ABBREV_CHARS]
# Drop events that are not related to validator queries
df.dropna(subset="query", inplace=True)
print(df.completions.apply(type).value_counts())
# Assumes completions is in the frame
df["completions"] = df["completions"].apply(
lambda x: x if isinstance(x, list) else eval(x)
)
df["completion_words"] = df.completions.apply(
lambda x: sum([len(xx.split()) for xx in x]) if isinstance(x, list) else 0
)
df["validator_words"] = df.apply(
lambda x: len(str(x.query).split())
+ len(str(x.challenge).split())
+ len(str(x.reference).split()),
axis=1,
)
df.to_csv(save_path, index=False)
return df
@st.cache_data()
def normalize_rewards(df, turn=0, percentile=0.98):
top_reward_stats = (
df.loc[df.turn == turn]
.astype({"rewards": float})
.groupby("task")
.rewards.quantile(percentile)
)
df["best_reward"] = df.task.map(top_reward_stats)
df["normalized_rewards"] = df["rewards"].astype(float) / df["best_reward"]
return df
@st.cache_data(show_spinner=False)
def download_runs(time, df_vali):
pbar = tqdm.tqdm(df_vali.index, total=len(df_vali))
progress = st.progress(0, text="Loading data")
for i, idx in enumerate(pbar):
row = df_vali.loc[idx]
prog_msg = f"Downloading data {i/len(df_vali)*100:.0f}%"
progress.progress(
i / len(df_vali),
text=f"{prog_msg}... **downloading** `{os.path.join(*row.run_id)}`",
)
save_path = f"data/wandb/{row.run_id}.parquet"
# Create the directory if it does not exist
os.makedirs(os.path.dirname(save_path), exist_ok=True)
if os.path.exists(save_path):
pbar.set_description(
f">> Skipping {row.run_id!r} because file {save_path!r} already exists"
)
continue
try:
pbar.set_description(f"* Downloading run {row.run_id!r}")
run = api.run(row.run_path)
# By default we just download a subset of events (500 most recent)
df = run.history()
df.to_parquet(save_path)
except KeyboardInterrupt:
break
except Exception as e:
pbar.set_description(
f"- Something went wrong with {row.run_id!r}: {print_exc()}\n"
)
progress.empty()
def get_productivity(df_runs):
total_duration = df_runs.last_event_at.max() - df_runs.created_at.min()
total_steps = df_runs.num_steps.sum()
total_completions = (df_runs.num_steps * 100).sum() # TODO: Parse from df
total_completion_words = (df_runs.num_steps * df_runs.completion_words).sum()
total_completion_tokens = round(total_completion_words / 0.75)
total_validator_words = (
df_runs.num_steps
* df_runs.apply(
lambda x: len(str(x.query).split())
+ len(str(x.challenge).split())
+ len(str(x.reference).split()),
axis=1,
)
).sum()
total_validator_tokens = round(total_validator_words / 0.75)
total_dataset_tokens = total_completion_tokens + total_validator_tokens
return {
"duration": total_duration,
"total_events": total_steps,
"total_completions": total_completions,
"total_completion_tokens": total_completion_tokens,
"total_validator_tokens": total_validator_tokens,
"total_tokens": total_dataset_tokens,
}
@st.cache_data(show_spinner=False)
def get_reward_stats(
df,
exclude_multiturn=True,
freq="D",
remove_zero_rewards=True,
agg="mean",
date_min="2024-01-22",
date_max="2024-08-12",
): # TODO: Set the date_max to the current date
df = df.loc[df._timestamp.between(pd.Timestamp(date_min), pd.Timestamp(date_max))]
if exclude_multiturn:
df = df.loc[df.turn == 0]
if remove_zero_rewards:
df = df.loc[df.rewards > 0]
groups = ["run_id", pd.Grouper(key="_timestamp", freq=freq), "task"]
return df.groupby(groups).agg({"rewards": agg, "normalized_rewards": agg})
def get_release_dates():
release_dates = pd.DataFrame(
[
{
"version": "1.0.0",
"release_date": pd.Timestamp(month=1, day=22, year=2024),
"note": "",
"model": "zephyr",
"tasks_affected": ["qa", "summarization"],
},
{
"version": "1.0.1",
"release_date": pd.Timestamp(month=1, day=22, year=2024),
"note": "",
"model": "zephyr",
"tasks_affected": [],
},
{
"version": "1.0.2",
"release_date": pd.Timestamp(month=1, day=24, year=2024),
"note": "",
"model": "zephyr",
"tasks_affected": ["qa", "summarization"],
},
{
"version": "1.0.3",
"release_date": pd.Timestamp(month=2, day=14, year=2024),
"note": "",
"model": "zephyr",
"tasks_affected": [],
},
{
"version": "1.0.4",
"release_date": pd.Timestamp(month=2, day=15, year=2024),
"note": "",
"model": "zephyr",
"tasks_affected": [],
},
{
"version": "1.1.0",
"release_date": pd.Timestamp(month=2, day=21, year=2024),
"note": "decay scores",
"model": "zephyr",
"tasks_affected": ["date_qa", "math"],
},
{
"version": "1.1.1",
"release_date": pd.Timestamp(month=2, day=28, year=2024),
"note": "reduce penalty weight",
"model": "zephyr",
"tasks_affected": ["date_qa", "qa", "summarization"],
},
{
"version": "1.1.2",
"release_date": pd.Timestamp(month=2, day=29, year=2024),
"note": "",
"model": "zephyr",
"tasks_affected": [],
},
{
"version": "1.1.3",
"release_date": pd.Timestamp(month=3, day=11, year=2024),
"note": "",
"model": "zephyr",
"tasks_affected": [],
},
{
"version": "1.2.0",
"release_date": pd.Timestamp(month=3, day=19, year=2024),
"note": "vllm",
"model": "zephyr",
"tasks_affected": [],
},
{
"version": "1.3.0",
"release_date": pd.Timestamp(month=3, day=27, year=2024),
"note": "",
"model": "solar",
"tasks_affected": ["all", "math"],
},
{
"version": "2.0.0",
"release_date": pd.Timestamp(month=4, day=4, year=2024),
"note": "streaming",
"model": "solar",
"tasks_affected": ["math", "qa", "summarization"],
},
{
"version": "2.1.0",
"release_date": pd.Timestamp(month=4, day=18, year=2024),
"note": "chattensor prompt",
"model": "solar",
"tasks_affected": ["generic"],
},
{
"version": "2.2.0",
"release_date": pd.Timestamp(month=5, day=1, year=2024),
"note": "multiturn + paraphrase",
"model": "solar",
"tasks_affected": ["sentiment", "translation", "math"],
},
{
"version": "2.3.0",
"release_date": pd.Timestamp(month=5, day=20, year=2024),
"note": "llama + freeform date",
"model": "llama",
"tasks_affected": ["all", "date_qa"],
},
{
"version": "2.3.1",
"release_date": pd.Timestamp(month=5, day=21, year=2024),
"note": "",
"model": "llama",
"tasks_affected": ["date_qa"],
},
{
"version": "2.4.0",
"release_date": pd.Timestamp(month=6, day=5, year=2024),
"note": "streaming penalty",
"model": "llama",
"tasks_affected": [],
},
{
"version": "2.4.1",
"release_date": pd.Timestamp(month=6, day=6, year=2024),
"note": "",
"model": "llama",
"tasks_affected": [],
},
{
"version": "2.4.2",
"release_date": pd.Timestamp(month=6, day=7, year=2024),
"note": "",
"model": "llama",
"tasks_affected": [],
},
{
"version": "2.4.2",
"release_date": pd.Timestamp(month=6, day=7, year=2024),
"note": "",
"model": "llama",
"tasks_affected": [],
},
{
"version": "2.5.0",
"release_date": pd.Timestamp(month=6, day=18, year=2024),
"note": "reduce multiturn",
"model": "llama",
"tasks_affected": ["translation", "sentiment"],
},
{
"version": "2.5.1",
"release_date": pd.Timestamp(month=6, day=25, year=2024),
"note": "reduce timeout",
"model": "llama",
"tasks_affected": [],
},
]
)
return release_dates
def plot_reward_trends(
df_stats,
task="qa",
window=14,
col="normalized_reward",
annotate=False,
task_label="Question answering",
):
stats = df_stats.reset_index()
release_dates = get_release_dates()
stats_task = stats.loc[(stats.task == task)].sort_values(by="_timestamp")
stats_task["rewards_ma"] = stats_task[col].rolling(window, min_periods=0).mean()
fig = px.area(
stats_task,
x="_timestamp",
y="rewards_ma",
title=f"Reward Trend for {task_label} Task",
labels={"rewards_ma": f"Rewards [{window} day avg.]", "_timestamp": ""},
width=800,
height=600,
)
if not annotate:
return fig
# Add annotations based on relevant releases
for idx, row in release_dates.iterrows():
line_color = "grey"
if task in row["tasks_affected"]:
line_color = "red"
elif "all" not in row["tasks_affected"]:
line_color = "blue"
# TODO add annotation or something
fig.add_vline(
row["release_date"],
line_color=line_color,
opacity=0.6,
line_dash="dot",
line_width=1,
) # , annotation_text=str(v))
return fig
@st.cache_data()
def get_task_counts(df_runs, df_events):
# Get mapping from run id to prompting repo version
run_to_version = df_runs.set_index("run_id").version.to_dict()
df_events["version"] = df_events.run_id.map(run_to_version)
def version_to_spec(version):
major, minor, patch = version.split(".")
return 10_000 * major + 100 * minor + patch
def get_closest_prev_version(version, my_versions):
ref_spec = version_to_spec(version)
my_specs = list(map(version_to_spec, my_versions))
match = my_specs[0]
for spec in my_specs[1:]:
if spec > ref_spec:
break
match = spec
return my_versions[my_specs.index(match)]
# Now estimate the distribution of tasks for each version using the event data
task_rate = (
df_events.groupby("version")
.task.value_counts(normalize=True)
.unstack()
.fillna(0)
)
# Impute missing versions
for v in sorted(df_runs.version.unique()):
if v not in task_rate.index:
prev_version = get_closest_prev_version(v, list(task_rate.index))
print(
f"Imputing version {v} with task rate from closes previous version {prev_version!r}"
)
task_rate.loc[v] = task_rate.loc[prev_version]
# get esimated number of each task generated in every run using summary dataframe
task_counts = (
df_runs.set_index("created_at")
.sort_index()
.apply(lambda x: round(task_rate.loc[x.version] * x.num_steps), axis=1)
.cumsum()
)
return task_counts
def load_state_vars(username=USERNAME, percentile=0.95):
UPDATE_INTERVAL = 600
df_runs = build_data(time.time() // UPDATE_INTERVAL, use_cache=False)
# df_runs = df_runs.loc[df_runs.netuid.isin([1,61,102])] # Now we filter for the netuid tag in build_data
st.toast(f"Loaded {len(df_runs)} runs")
df_vali = df_runs.loc[df_runs.username == username]
# df_vali = df_runs
download_runs(time.time() // UPDATE_INTERVAL, df_vali)
df_events = load_downloaded_runs(time.time() // UPDATE_INTERVAL)
df_events = normalize_rewards(df_events, percentile=percentile)
yesterday = pd.Timestamp.now(tz="UTC") - pd.Timedelta("1d")
runs_alive_24h_ago = df_runs.last_event_at > yesterday
df_runs_24h = df_runs.loc[runs_alive_24h_ago]
# weight factor indicates the fraction of events that happened within the last 24 hour.
fraction = 1 - (yesterday - df_runs_24h.created_at) / (
pd.Timestamp.now(tz="UTC") - df_runs_24h.created_at
)
df_runs_24h["fraction"] = fraction.clip(0, 1)
df_runs_24h["num_steps"] *= fraction.clip(0, 1)
df_task_counts = get_task_counts(df_runs, df_events)
df_m = get_metagraph(time.time() // UPDATE_INTERVAL)
return {
"df_runs": df_runs,
"df_runs_24h": df_runs_24h,
"df_vali": df_vali,
"df_events": df_events,
"metagraph": df_m,
"df_task_counts": df_task_counts,
}
if __name__ == "__main__":
pass
|