File size: 3,942 Bytes
ca64dfe
988c5f2
 
55bd66e
988c5f2
 
26b862a
85b8a02
d30c02a
26b862a
e294c88
5eddda9
988c5f2
 
 
 
 
55bd66e
988c5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca64dfe
cbe2d25
ca64dfe
 
cbe2d25
ca64dfe
cbe2d25
 
ca64dfe
2261a7d
cbe2d25
2261a7d
 
 
 
cbe2d25
 
988c5f2
ca64dfe
26b862a
d30c02a
cbe2d25
 
55bd66e
cbe2d25
 
 
 
 
 
 
 
 
 
 
 
e294c88
cbe2d25
 
 
 
 
 
 
 
26b862a
988c5f2
cbe2d25
d30c02a
988c5f2
96d766a
988c5f2
96d766a
 
 
d30c02a
 
85b8a02
 
 
d30c02a
 
 
 
 
 
 
 
 
 
988c5f2
d30c02a
 
 
 
96d766a
 
 
 
 
e294c88
96d766a
 
d30c02a
85b8a02
988c5f2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import spaces
import os
import gradio as gr
import torch

from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline

# System prompts
DEFAULT_SYSTEM_PROMPT = """
Based on the information in this document provided in context, answer the question as accurately as possible in 1 or 2 lines. If the information is not in the context,
respond with "I don't know" or a similar acknowledgment that the answer is not available.
""".strip()

SYSTEM_PROMPT = "Use the following pieces of context to answer the question at the end. Do not provide commentary or elaboration more than 1 or 2 lines.?"

def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
    return f"""
[INST] <<SYS>>
{system_prompt}
<</SYS>>
{prompt} [/INST]
""".strip()

template = generate_prompt(
    """
{context}
Question: {question}
""",
    system_prompt=SYSTEM_PROMPT,
)

prompt_template = PromptTemplate(template=template, input_variables=["context", "question"])

# Initialize embeddings and database (CPU only)
embeddings = HuggingFaceInstructEmbeddings(
    model_name="hkunlp/instructor-base",
    model_kwargs={"device": "cpu"}
)

db = Chroma(
    persist_directory="db",
    embedding_function=embeddings
)

def initialize_model():
    model_id = "meta-llama/Llama-3.2-3B-Instruct"
    token = os.environ.get("HF_TOKEN")
    
    tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        token=token,
        device_map="cuda"
    )
    if torch.cuda.is_available():
        model.device = "cuda"
    else:
        print("CUDA is not available")
    
    return model, tokenizer

@spaces.GPU
def respond(message, history, system_message, max_tokens, temperature, top_p):
    try:
        model, tokenizer = initialize_model()
        
        streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
        text_pipeline = pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            repetition_penalty=1.15,
            streamer=streamer,
        )
        
        llm = HuggingFacePipeline(pipeline=text_pipeline)
        
        qa_chain = RetrievalQA.from_chain_type(
            llm=llm,
            chain_type="stuff",
            retriever=db.as_retriever(search_kwargs={"k": 2}),
            return_source_documents=False,
            chain_type_kwargs={"prompt": prompt_template}
        )
        
        response = qa_chain.invoke({"query": message})
        yield response["result"]
        
    except Exception as e:
        yield f"An error occurred: {str(e)}"

# Create Gradio interface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(
            value=DEFAULT_SYSTEM_PROMPT,
            label="System Message",
            lines=3,
            visible=False
        ),
        gr.Slider(
            minimum=1,
            maximum=2048,
            value=500,
            step=1,
            label="Max new tokens"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=0.1,
            step=0.1,
            label="Temperature"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p"
        ),
    ],
    title="ROS2 Expert Assistant",
    description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
)

if __name__ == "__main__":
    demo.launch()