Spaces:
Sleeping
Sleeping
File size: 3,942 Bytes
ca64dfe 988c5f2 55bd66e 988c5f2 26b862a 85b8a02 d30c02a 26b862a e294c88 5eddda9 988c5f2 55bd66e 988c5f2 ca64dfe cbe2d25 ca64dfe cbe2d25 ca64dfe cbe2d25 ca64dfe 2261a7d cbe2d25 2261a7d cbe2d25 988c5f2 ca64dfe 26b862a d30c02a cbe2d25 55bd66e cbe2d25 e294c88 cbe2d25 26b862a 988c5f2 cbe2d25 d30c02a 988c5f2 96d766a 988c5f2 96d766a d30c02a 85b8a02 d30c02a 988c5f2 d30c02a 96d766a e294c88 96d766a d30c02a 85b8a02 988c5f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import spaces
import os
import gradio as gr
import torch
from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline
# System prompts
DEFAULT_SYSTEM_PROMPT = """
Based on the information in this document provided in context, answer the question as accurately as possible in 1 or 2 lines. If the information is not in the context,
respond with "I don't know" or a similar acknowledgment that the answer is not available.
""".strip()
SYSTEM_PROMPT = "Use the following pieces of context to answer the question at the end. Do not provide commentary or elaboration more than 1 or 2 lines.?"
def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
return f"""
[INST] <<SYS>>
{system_prompt}
<</SYS>>
{prompt} [/INST]
""".strip()
template = generate_prompt(
"""
{context}
Question: {question}
""",
system_prompt=SYSTEM_PROMPT,
)
prompt_template = PromptTemplate(template=template, input_variables=["context", "question"])
# Initialize embeddings and database (CPU only)
embeddings = HuggingFaceInstructEmbeddings(
model_name="hkunlp/instructor-base",
model_kwargs={"device": "cpu"}
)
db = Chroma(
persist_directory="db",
embedding_function=embeddings
)
def initialize_model():
model_id = "meta-llama/Llama-3.2-3B-Instruct"
token = os.environ.get("HF_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=token,
device_map="cuda"
)
if torch.cuda.is_available():
model.device = "cuda"
else:
print("CUDA is not available")
return model, tokenizer
@spaces.GPU
def respond(message, history, system_message, max_tokens, temperature, top_p):
try:
model, tokenizer = initialize_model()
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
text_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.15,
streamer=streamer,
)
llm = HuggingFacePipeline(pipeline=text_pipeline)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 2}),
return_source_documents=False,
chain_type_kwargs={"prompt": prompt_template}
)
response = qa_chain.invoke({"query": message})
yield response["result"]
except Exception as e:
yield f"An error occurred: {str(e)}"
# Create Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value=DEFAULT_SYSTEM_PROMPT,
label="System Message",
lines=3,
visible=False
),
gr.Slider(
minimum=1,
maximum=2048,
value=500,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.1,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
),
],
title="ROS2 Expert Assistant",
description="Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.",
)
if __name__ == "__main__":
demo.launch() |