Spaces:
Runtime error
Runtime error
File size: 7,988 Bytes
531fedc 18d53eb 531fedc f811706 ba77679 87836ca bc69261 87836ca a16ea28 bc69261 d370018 a16ea28 bc69261 5f747d7 a16ea28 ba77679 18d53eb bc69261 531fedc a16ea28 531fedc 8ef6bdb bc69261 a16ea28 18d53eb bc69261 a16ea28 18d53eb 4e68c03 c094b98 18d53eb bc69261 a16ea28 41e9cfe a16ea28 18d53eb a16ea28 18d53eb 41e9cfe a16ea28 41e9cfe bc69261 a16ea28 531fedc bc69261 41e9cfe bc69261 2e8164f 4e68c03 18d53eb bc69261 2e8164f a16ea28 2e8164f a16ea28 531fedc 2e8164f 8e31b74 bc69261 2e8164f 8ef6bdb 2e8164f bc69261 a16ea28 bc69261 cd5357e 77291e6 aab8d0f cd5357e a16ea28 cd5357e 18a85c9 8ef6bdb 531fedc cd5357e 18a85c9 cd5357e a16ea28 cd5357e a16ea28 cd5357e 4e68c03 bc69261 cd5357e 2e8164f aaf8b9e 41e9cfe cd5357e aaf8b9e 41e9cfe 3c677d8 2e8164f cd5357e b9352e2 aaf8b9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import tensorflow as tf
from PIL import Image
import numpy as np
import cv2
import gradio as gr
from tensorflow import keras
from keras.models import load_model
import folium
from Map import *
from tensorflow.keras.models import load_model
loaded_feature_extractor = load_model("feature_extractor_model_5_8")
# Load the SVM model
import pickle
with open("svm_model_probablity_5_8.pkl", 'rb') as file:
loaded_svm_model = pickle.load(file)
# Load the mineral detection model
mineral_detection_model = tf.keras.models.load_model(
"mineral_detection_model_Final_4_18_2024.h5")
# Define the class labels
class_labels = ['biotite', 'granite', 'olivine', 'plagioclase', 'staurolite']
mineral_facts = {
'biotite': "Hardness: 2.5-3\nMagnetism: None\nDensity: 2.7-3.3 g/cm³\nColors: Black, brown, green\nDescription: A phyllosilicate mineral of the mica group with a distinctive platy structure.",
'granite': "Hardness: 6-7\nMagnetism: None\nDensity: 2.6-2.7 g/cm³\nColors: Gray, pink, white\nDescription: An intrusive igneous rock composed mainly of quartz, feldspar, and mica.",
'olivine': "Hardness: 6.5-7\nMagnetism: None\nDensity: 3.2-3.4 g/cm³\nColors: Green, yellow-green, brown\nDescription: A nesosilicate mineral with a green, glassy appearance, commonly found in mafic and ultramafic rocks.",
'plagioclase': "Hardness: 6-6.5\nMagnetism: None\nDensity: 2.6-2.8 g/cm³\nColors: White, gray, green\nDescription: A series of feldspar minerals ranging from sodium-rich albite to calcium-rich anorthite.",
'staurolite': "Hardness: 7-7.5\nMagnetism: None\nDensity: 3.6-3.8 g/cm³\nColors: Brown, reddish-brown, black\nDescription: A nesosilicate mineral with a distinctive cruciform twinning habit, commonly found in metamorphic rocks."
}
# Function to preprocess the image for mineral detection
# Function to preprocess the image for mineral detection
def preprocess_image_detection(img_array):
if img_array is None:
return None
img = (img_array * 255).astype(np.uint8) # Convert back to uint8
img_array = cv2.resize(img, (150, 150)) # Resize to 150x150
img_array = img_array.astype(np.uint8)
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
return img_array
# Function to preprocess the image for classification
def preprocess_image_classification(img_array):
if img_array is None:
return None
img = (img_array * 255).astype(np.uint8) # Convert back to uint8
img_array = cv2.resize(img, (224, 224)) # Resize to 224x224
img_array = img_array.astype(np.uint8)
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
return img_array
# Define the function to detect if the input is a mineral
def detect_mineral(image):
if image is not None:
image = Image.fromarray(np.array(image).astype(np.uint8), 'RGB')
image = np.array(image)
image = Image.fromarray(image.astype(np.uint8), 'RGB')
image = image.resize((150, 150)) # Assuming the model expects 150x150 images
image = np.array(image) / 255.0
image = np.expand_dims(image, axis=0)
# Make prediction
prediction = mineral_detection_model.predict(image)
is_mineral = prediction[0][0] < 0.5 # Assuming binary classification
return is_mineral
else:
# Handle the case where no image is provided
return "No image provided."
# Define the function to make predictions
def classify_image(image):
if image is None:
# Handle the case where no image is provided
return "No image provided.", "", "", ""
# Check if the input is a mineral
is_mineral = detect_mineral(image)
if not is_mineral:
# Return placeholders for non-mineral input
return "Input is not a Microscopic mineral thin section, Please Insert a thin section.", "", "", ""
# Preprocess the image for classification
image = preprocess_image_classification(np.array(image))
if image is None:
return "Error preprocessing image.", "", "", ""
# Extract features using the loaded CNN feature extractor
image_features = loaded_feature_extractor.predict(image)
# Make prediction using the loaded SVM model
predicted_label = loaded_svm_model.predict(image_features)
class_idx = predicted_label[0]
predicted_class_name = class_labels[class_idx]
# Get probabilities for all classes
probabilities = loaded_svm_model.predict_proba(image_features)[0]
# Convert prediction scores to percentages
prediction_scores_percentages = [f"{score * 100:.2f}%" for score in probabilities]
predicted_scores = "\n".join(
[f"{label}: {score}" for label, score in zip(class_labels, prediction_scores_percentages)])
# Get key facts about the predicted mineral
mineral_key_facts = mineral_facts.get(predicted_class_name, "No key facts available for this mineral.")
if predicted_class_name:
# Generate the mineral map
mineral_map = generate_mineral_map(predicted_class_name)
mineral_map_html = mineral_map._repr_html_()
else:
mineral_map_html = ""
return predicted_class_name, predicted_scores, mineral_key_facts, mineral_map_html
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Microscopic Mineral Identification App</h1>
<p>Welcome to our interactive space dedicated to identifying minerals through microscopic imagery. This platform showcases various microscopic images that reveal the intricate patterns and characteristics of different minerals. To get started, you can explore our collection of mineral images or use your own to identify key features such as crystal structure, color variations, and inclusions.</p>
<p>🔎 For a deeper understanding of mineral identification techniques and how to analyze microscopic mineral images, visit our comprehensive <a href="https://geology.com/minerals/">mineral guide</a>. It provides insights into common mineralogical features and how to recognize them.</p>
<p>🧪 Interested in more advanced mineralogy? Check Mindat which can provide more details about the mineral identified <a href="https://www.mindat.org/"><b>Mindat.org</b></a> section, where we dive into more complex mineral structures and analytical methods.</p>
</div>
'''
# Welcome Message
def welcome(name):
return f"Welcome to Gradio, {name}!"
app_title = "Mineral Identification using AI"
app_description = "This application uses advanced machine learning models to accurately identify and classify different types of minerals from images. Simply upload an image, and the system will provide the predicted mineral class along with its key characteristics and properties."
custom_css = """
.gradio-container {display: flex; justify-content: center; align-items: center; height: 100vh;background-color: #f0f0f0;}
#title-container {
display: flex;
align-items: center;
justify-content: center;
margin-bottom: 20px;
}
#app-title {
margin-right: 20px; /* Adjust the spacing between the title and logo */
}
#logo-img {
width: 50px; /* Adjust the logo size as needed */
height: 50px;
}
"""
with gr.Blocks(
title=app_title,
css=custom_css,
theme=gr.themes.Monochrome(),
) as demo:
gr.Markdown(DESCRIPTION)
# Create interface components
with gr.Row():
image_input = gr.Image(elem_id="image_input", type="pil")
output_components = [
gr.Textbox(label="Mineral Name", elem_id="predicted_class_name"),
gr.Textbox(label="Prediction Scores of Model", elem_id="predicted_scores", lines=5),
gr.Textbox(label="Key Facts About Mineral", elem_id="mineral_key_facts", lines=8),
]
image_button = gr.Button("Classify Mineral")
image_button.click(
classify_image,
inputs=image_input,
outputs=output_components
)
demo.launch(auth_message="Welcome to the Mineral Identification App.") |