File size: 7,988 Bytes
531fedc
 
 
18d53eb
531fedc
f811706
ba77679
87836ca
 
bc69261
87836ca
 
 
 
a16ea28
bc69261
d370018
a16ea28
 
 
bc69261
5f747d7
a16ea28
ba77679
18d53eb
bc69261
 
531fedc
a16ea28
531fedc
8ef6bdb
 
 
 
 
 
 
bc69261
 
 
 
 
a16ea28
18d53eb
 
 
 
 
 
 
 
 
bc69261
a16ea28
18d53eb
 
 
4e68c03
 
c094b98
 
18d53eb
 
bc69261
a16ea28
41e9cfe
 
 
a16ea28
 
 
18d53eb
a16ea28
 
18d53eb
 
 
 
41e9cfe
a16ea28
41e9cfe
 
bc69261
a16ea28
531fedc
bc69261
 
 
 
41e9cfe
 
 
bc69261
 
2e8164f
4e68c03
18d53eb
 
bc69261
2e8164f
a16ea28
 
2e8164f
a16ea28
 
 
531fedc
2e8164f
 
 
8e31b74
 
 
 
bc69261
 
2e8164f
 
8ef6bdb
2e8164f
bc69261
 
 
 
 
 
a16ea28
bc69261
cd5357e
 
 
 
77291e6
aab8d0f
cd5357e
 
 
a16ea28
 
cd5357e
 
 
18a85c9
8ef6bdb
 
531fedc
cd5357e
18a85c9
cd5357e
a16ea28
 
 
 
cd5357e
 
 
 
 
a16ea28
cd5357e
 
 
4e68c03
bc69261
 
 
cd5357e
 
2e8164f
aaf8b9e
41e9cfe
 
 
cd5357e
 
aaf8b9e
41e9cfe
3c677d8
2e8164f
 
 
 
 
cd5357e
b9352e2
aaf8b9e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import tensorflow as tf
from PIL import Image
import numpy as np
import cv2
import gradio as gr
from tensorflow import keras
from keras.models import load_model
import folium

from Map import *




from tensorflow.keras.models import load_model

loaded_feature_extractor = load_model("feature_extractor_model_5_8")

# Load the SVM model
import pickle

with open("svm_model_probablity_5_8.pkl", 'rb') as file:
    loaded_svm_model = pickle.load(file)

# Load the mineral detection model
mineral_detection_model = tf.keras.models.load_model(
    "mineral_detection_model_Final_4_18_2024.h5")

# Define the class labels
class_labels = ['biotite', 'granite', 'olivine', 'plagioclase', 'staurolite']
mineral_facts = {
    'biotite': "Hardness: 2.5-3\nMagnetism: None\nDensity: 2.7-3.3 g/cm³\nColors: Black, brown, green\nDescription: A phyllosilicate mineral of the mica group with a distinctive platy structure.",
    'granite': "Hardness: 6-7\nMagnetism: None\nDensity: 2.6-2.7 g/cm³\nColors: Gray, pink, white\nDescription: An intrusive igneous rock composed mainly of quartz, feldspar, and mica.",
    'olivine': "Hardness: 6.5-7\nMagnetism: None\nDensity: 3.2-3.4 g/cm³\nColors: Green, yellow-green, brown\nDescription: A nesosilicate mineral with a green, glassy appearance, commonly found in mafic and ultramafic rocks.",
    'plagioclase': "Hardness: 6-6.5\nMagnetism: None\nDensity: 2.6-2.8 g/cm³\nColors: White, gray, green\nDescription: A series of feldspar minerals ranging from sodium-rich albite to calcium-rich anorthite.",
    'staurolite': "Hardness: 7-7.5\nMagnetism: None\nDensity: 3.6-3.8 g/cm³\nColors: Brown, reddish-brown, black\nDescription: A nesosilicate mineral with a distinctive cruciform twinning habit, commonly found in metamorphic rocks."
}


# Function to preprocess the image for mineral detection


# Function to preprocess the image for mineral detection
def preprocess_image_detection(img_array):
    if img_array is None:
        return None
    img = (img_array * 255).astype(np.uint8)  # Convert back to uint8
    img_array = cv2.resize(img, (150, 150))  # Resize to 150x150
    img_array = img_array.astype(np.uint8)
    img_array = np.expand_dims(img_array, axis=0)  # Add batch dimension
    return img_array


# Function to preprocess the image for classification
def preprocess_image_classification(img_array):
    if img_array is None:
        return None
    img = (img_array * 255).astype(np.uint8)  # Convert back to uint8
    img_array = cv2.resize(img, (224, 224))  # Resize to 224x224
    img_array = img_array.astype(np.uint8)
    img_array = np.expand_dims(img_array, axis=0)  # Add batch dimension
    return img_array


# Define the function to detect if the input is a mineral
def detect_mineral(image):
    if image is not None:
        image = Image.fromarray(np.array(image).astype(np.uint8), 'RGB')
        image = np.array(image)
        image = Image.fromarray(image.astype(np.uint8), 'RGB')
        image = image.resize((150, 150))  # Assuming the model expects 150x150 images
        image = np.array(image) / 255.0
        image = np.expand_dims(image, axis=0)

        # Make prediction
        prediction = mineral_detection_model.predict(image)
        is_mineral = prediction[0][0] < 0.5  # Assuming binary classification
        return is_mineral
    else:
        # Handle the case where no image is provided
        return "No image provided."


# Define the function to make predictions
def classify_image(image):
    if image is None:
        # Handle the case where no image is provided
        return "No image provided.", "", "", ""

    # Check if the input is a mineral
    is_mineral = detect_mineral(image)
    if not is_mineral:
        # Return placeholders for non-mineral input
        return "Input is not a Microscopic mineral thin section, Please Insert a thin section.", "", "", ""

    # Preprocess the image for classification
    image = preprocess_image_classification(np.array(image))
    if image is None:
        return "Error preprocessing image.", "", "", ""

    # Extract features using the loaded CNN feature extractor
    image_features = loaded_feature_extractor.predict(image)

    # Make prediction using the loaded SVM model
    predicted_label = loaded_svm_model.predict(image_features)
    class_idx = predicted_label[0]
    predicted_class_name = class_labels[class_idx]

    # Get probabilities for all classes
    probabilities = loaded_svm_model.predict_proba(image_features)[0]

    # Convert prediction scores to percentages
    prediction_scores_percentages = [f"{score * 100:.2f}%" for score in probabilities]

    predicted_scores = "\n".join(
        [f"{label}: {score}" for label, score in zip(class_labels, prediction_scores_percentages)])

    # Get key facts about the predicted mineral
    mineral_key_facts = mineral_facts.get(predicted_class_name, "No key facts available for this mineral.")

    if predicted_class_name:
        # Generate the mineral map
        mineral_map = generate_mineral_map(predicted_class_name)
        mineral_map_html = mineral_map._repr_html_()
    else:
        mineral_map_html = ""

    return predicted_class_name, predicted_scores, mineral_key_facts, mineral_map_html
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Microscopic Mineral Identification App</h1>
<p>Welcome to our interactive space dedicated to identifying minerals through microscopic imagery. This platform showcases various microscopic images that reveal the intricate patterns and characteristics of different minerals. To get started, you can explore our collection of mineral images or use your own to identify key features such as crystal structure, color variations, and inclusions.</p>
<p>🔎 For a deeper understanding of mineral identification techniques and how to analyze microscopic mineral images, visit our comprehensive <a href="https://geology.com/minerals/">mineral guide</a>. It provides insights into common mineralogical features and how to recognize them.</p>
<p>🧪 Interested in more advanced mineralogy? Check Mindat which can provide more details about the mineral identified <a href="https://www.mindat.org/"><b>Mindat.org</b></a> section, where we dive into more complex mineral structures and analytical methods.</p>
</div>
'''


# Welcome Message
def welcome(name):
    return f"Welcome to Gradio, {name}!"


app_title = "Mineral Identification using AI"
app_description = "This application uses advanced machine learning models to accurately identify and classify different types of minerals from images. Simply upload an image, and the system will provide the predicted mineral class along with its key characteristics and properties."

custom_css = """
.gradio-container {display: flex; justify-content: center; align-items: center; height: 100vh;background-color: #f0f0f0;}
#title-container {
    display: flex;
    align-items: center;
    justify-content: center;
    margin-bottom: 20px;
}
#app-title {
    margin-right: 20px; /* Adjust the spacing between the title and logo */
}
#logo-img {
    width: 50px; /* Adjust the logo size as needed */
    height: 50px;
}
"""
with gr.Blocks(
        title=app_title,
        css=custom_css,
        theme=gr.themes.Monochrome(),
) as demo:
    gr.Markdown(DESCRIPTION)

    # Create interface components
    with gr.Row():
        image_input = gr.Image(elem_id="image_input", type="pil")
        output_components = [
            gr.Textbox(label="Mineral Name", elem_id="predicted_class_name"),
            gr.Textbox(label="Prediction Scores of Model", elem_id="predicted_scores", lines=5),
            gr.Textbox(label="Key Facts About Mineral", elem_id="mineral_key_facts", lines=8),
        ]
        image_button = gr.Button("Classify Mineral")
        image_button.click(
            classify_image,
            inputs=image_input,
            outputs=output_components
        )

   

    demo.launch(auth_message="Welcome to the Mineral Identification App.")