File size: 22,008 Bytes
df481b9
f025bf0
 
 
bc80edf
f025bf0
 
5477235
f025bf0
 
 
5477235
f025bf0
 
 
 
 
 
 
 
 
5477235
 
 
 
f025bf0
3a80282
 
5477235
3a80282
f025bf0
3a80282
5477235
3a80282
5477235
3a80282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5477235
3a80282
5477235
 
3a80282
 
f025bf0
 
 
5477235
3a80282
bc80edf
f025bf0
5477235
 
 
 
 
 
 
 
 
f025bf0
 
 
 
bc80edf
 
f025bf0
 
5477235
3a80282
f025bf0
 
 
 
 
 
 
 
 
 
 
 
5477235
 
f025bf0
 
 
 
 
5477235
f025bf0
3a80282
5477235
3a80282
f025bf0
 
 
 
bc80edf
f025bf0
 
 
 
 
 
5477235
 
 
 
 
 
 
f025bf0
 
 
 
3a80282
f025bf0
 
 
 
 
 
 
 
 
 
 
 
3a80282
 
f025bf0
 
 
 
 
 
 
5477235
f025bf0
3a80282
f025bf0
3a80282
f025bf0
3a80282
f025bf0
3a80282
f025bf0
3a80282
f025bf0
3a80282
 
 
f025bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5477235
 
 
 
 
 
 
f025bf0
 
 
3a80282
 
 
5477235
3a80282
5477235
3a80282
 
5477235
3a80282
5477235
 
 
 
 
3a80282
 
5477235
3a80282
 
 
5477235
 
 
 
3a80282
f025bf0
3a80282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5477235
3a80282
 
5477235
 
3a80282
 
 
5477235
3a80282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5477235
 
 
 
 
 
 
 
 
3a80282
 
5477235
 
 
 
3a80282
f025bf0
3a80282
 
 
5477235
 
 
 
 
 
 
 
 
3a80282
 
f025bf0
 
5477235
f025bf0
 
 
 
3a80282
f025bf0
 
 
 
 
 
 
3a80282
 
 
 
 
 
5477235
 
3a80282
5477235
3a80282
5477235
3a80282
5477235
3a80282
5477235
f025bf0
3a80282
f025bf0
 
3a80282
 
5477235
 
 
3a80282
 
5477235
 
 
3a80282
 
5477235
 
 
3a80282
 
5477235
 
 
3a80282
 
5477235
 
 
3a80282
 
 
 
 
 
 
 
 
 
5477235
 
3a80282
 
5477235
3a80282
f025bf0
5477235
 
 
 
 
f025bf0
 
 
 
 
 
3a80282
 
 
 
5477235
 
 
 
 
3a80282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10922c3
f025bf0
3a80282
 
5477235
df481b9
f025bf0
3a80282
f025bf0
 
 
 
3a80282
f025bf0
5477235
 
3a80282
 
 
 
 
 
5477235
3a80282
5477235
3a80282
 
 
 
 
 
 
5477235
3a80282
 
 
5477235
 
 
 
3a80282
 
 
 
 
 
 
5477235
 
3a80282
 
bc80edf
3a80282
 
f025bf0
df481b9
f025bf0
5477235
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import streamlit as st
import google.generativeai as genai
import zipfile
import io
import json
import os
from pathlib import Path
import time  # Added for simulating mock delay

# --- Configuration ---
GEMINI_MODEL_NAME = "gemini-2.5-pro-preview-03-25"
MAX_PROMPT_TOKENS_ESTIMATE = 800000  # Adjust as needed

AVAILABLE_ANALYSES = {
    "generate_docs": "Generate Missing Docstrings/Comments",
    "find_bugs": "Identify Potential Bugs & Anti-patterns",
    "check_style": "Check Style Guide Compliance (General)",
    "summarize_modules": "Summarize Complex Modules/Files",
    "suggest_refactoring": "Suggest Refactoring Opportunities"
}

CODE_EXTENSIONS = {
    '.py', '.js', '.java', '.c', '.cpp', '.h', '.cs', '.go',
    '.rb', '.php', '.swift', '.kt', '.ts', '.html', '.css', '.scss', '.sql'
}

# --- Session State Initialization ---
if 'mock_api_call' not in st.session_state:
    st.session_state.mock_api_call = False  # Default to using the real API

# --- Gemini API Setup ---
model = None

def initialize_gemini_model():
    """Initializes the Gemini model if not in mock mode."""
    global model
    if model is None and not st.session_state.mock_api_call:
        try:
            if 'GEMINI_API_KEY' not in st.secrets:
                st.error("🚨 Gemini API Key not found. Add it to `.streamlit/secrets.toml`.")
                st.stop()
            genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
            model = genai.GenerativeModel(GEMINI_MODEL_NAME)
            print("Gemini Model Initialized.")
            return True
        except Exception as e:
            st.error(f"🚨 Error initializing Gemini SDK: {e}")
            st.stop()
            return False
    elif st.session_state.mock_api_call:
        print("Running in Mock Mode. Skipping Gemini initialization.")
        return True  # Allow proceeding in mock mode
    elif model is not None:
        print("Gemini Model already initialized.")
        return True
    return False

# --- Helper Functions ---

def estimate_token_count(text):
    """Roughly estimate token count (assumes ~3-4 characters per token)."""
    return len(text) // 3

def process_zip_file(uploaded_file):
    """
    Extracts code files and their content from the uploaded ZIP file.
    
    Returns:
        code_files (dict): Mapping of file paths to content.
        total_chars (int): Total number of characters in included files.
        file_count (int): Count of processed code files.
        ignored_files (list): List of files skipped or not processed.
    """
    code_files = {}
    total_chars = 0
    file_count = 0
    ignored_files = []

    try:
        with zipfile.ZipFile(io.BytesIO(uploaded_file.getvalue()), 'r') as zip_ref:
            for member in zip_ref.infolist():
                # Skip directories, hidden files, and files with '__' in the name
                if member.is_dir() or any(part.startswith('.') for part in Path(member.filename).parts) or '__' in member.filename:
                    continue

                file_path = Path(member.filename)
                if file_path.suffix.lower() in CODE_EXTENSIONS:
                    try:
                        with zip_ref.open(member) as file:
                            try:
                                content = file.read().decode('utf-8')
                            except UnicodeDecodeError:
                                try:
                                    content = file.read().decode('latin-1')
                                except Exception as decode_err:
                                    ignored_files.append(f"{member.filename} (Decode Error: {decode_err})")
                                    continue

                            code_files[member.filename] = content
                            total_chars += len(content)
                            file_count += 1
                    except Exception as read_err:
                        ignored_files.append(f"{member.filename} (Read Error: {read_err})")
                else:
                    # Only add to ignored if it's not explicitly ignored by path rules above
                    if not (any(part.startswith('.') for part in Path(member.filename).parts) or '__' in member.filename):
                        ignored_files.append(f"{member.filename} (Skipped Extension: {file_path.suffix})")

    except zipfile.BadZipFile:
        st.error("🚨 Invalid or corrupted ZIP file.")
        return None, 0, 0, []
    except Exception as e:
        st.error(f"🚨 Error processing ZIP file: {e}")
        return None, 0, 0, []

    return code_files, total_chars, file_count, ignored_files

def construct_analysis_prompt(code_files_dict, requested_analyses):
    """
    Constructs the prompt for Gemini, including code content and a JSON structure request.
    
    Returns:
        full_prompt (str): The complete prompt.
        included_files (list): List of file names included in the prompt.
    """
    prompt_content = "Analyze the following codebase provided as a collection of file paths and their content.\n\n"
    current_token_estimate = estimate_token_count(prompt_content)
    included_files = []
    concatenated_code = ""

    for filename, content in code_files_dict.items():
        file_marker = f"--- START FILE: {filename} ---\n"
        file_content = f"{content}\n"
        file_end_marker = f"--- END FILE: {filename} ---\n\n"
        segment = file_marker + file_content + file_end_marker
        segment_token_estimate = estimate_token_count(segment)

        if current_token_estimate + segment_token_estimate <= MAX_PROMPT_TOKENS_ESTIMATE:
            concatenated_code += segment
            current_token_estimate += segment_token_estimate
            included_files.append(filename)
        else:
            st.warning(f"⚠️ Codebase may exceed context window estimate (~{MAX_PROMPT_TOKENS_ESTIMATE} tokens). Analysis performed only on the first {len(included_files)} files ({current_token_estimate} tokens).")
            break

    if not included_files:
        st.error("🚨 No code files could be included within the estimated token limit.")
        return None, []

    prompt_content += concatenated_code

    # Build the expected JSON structure dynamically based on the selected analyses
    json_structure_description = "{\n"
    structure_parts = []
    if "generate_docs" in requested_analyses:
        structure_parts.append('    "documentation_suggestions": [{"file": "path/to/file", "line": number, "suggestion": "Suggested docstring/comment"}]')
    if "find_bugs" in requested_analyses:
        structure_parts.append('    "potential_bugs": [{"file": "path/to/file", "line": number, "description": "Description of potential bug/anti-pattern", "severity": "High/Medium/Low"}]')
    if "check_style" in requested_analyses:
        structure_parts.append('    "style_issues": [{"file": "path/to/file", "line": number, "description": "Description of style deviation"}]')
    if "summarize_modules" in requested_analyses:
        structure_parts.append('    "module_summaries": [{"file": "path/to/file", "summary": "One-paragraph summary of the file purpose/functionality"}]')
    if "suggest_refactoring" in requested_analyses:
        structure_parts.append('    "refactoring_suggestions": [{"file": "path/to/file", "line": number, "area": "e.g., function name, class name", "suggestion": "Description of refactoring suggestion"}]')
    json_structure_description += ",\n".join(structure_parts)
    json_structure_description += "\n}"

    prompt_footer = f"""
**Analysis Task:**
Perform the analyses corresponding to the keys present in the JSON structure below, based *only* on the provided code files ({', '.join(included_files)}).

**Output Format:**
Respond ONLY with a single, valid JSON object adhering strictly to the following structure. If no issues/suggestions are found for a category, provide an empty list `[]`. Do not include explanations outside the JSON structure.

{json_structure_description}

**JSON Output Only:**
"""
    full_prompt = prompt_content + prompt_footer
    return full_prompt, included_files

def call_gemini_api(prompt):
    """
    Calls the Gemini API (or simulates it in mock mode) with the provided prompt.
    
    Returns:
        insights (dict): The parsed JSON response from the API.
        error_message (str): An error message if something went wrong.
    """
    if not prompt:
        return None, "Prompt generation failed."

    # --- MOCK MODE LOGIC ---
    if st.session_state.mock_api_call:
        st.info(" MOCK MODE: Simulating API call...")
        time.sleep(2)  # Simulate network/processing delay

        # Simulated successful response
        mock_json_response = json.dumps({
            "documentation_suggestions": [{"file": "mock/core.py", "line": 15, "suggestion": "def process_data(data):\n    \"\"\"Processes the input data using mock logic.\"\"\""}],
            "potential_bugs": [{"file": "mock/utils.py", "line": 22, "description": "Potential division by zero if denominator is not checked.", "severity": "Medium"}],
            "style_issues": [{"file": "mock/core.py", "line": 5, "description": "Variable 'varName' does not follow snake_case convention."}],
            "module_summaries": [
                {"file": "mock/core.py", "summary": "This file contains the core mock processing logic."},
                {"file": "mock/utils.py", "summary": "Utility functions for mocking."}
            ],
            "refactoring_suggestions": [{"file": "mock/utils.py", "line": 30, "area": "calculate_metrics function", "suggestion": "Function is too long (> 50 lines), consider breaking it down."}]
        })
        st.success("Mock response generated successfully.")
        return json.loads(mock_json_response), None

    # --- REAL API CALL LOGIC ---
    else:
        if not initialize_gemini_model():
            return None, "Gemini Model Initialization Failed."
        if model is None:
            return None, "Gemini model not available."

        try:
            st.write(f"πŸ“‘ Sending request to {GEMINI_MODEL_NAME}...")
            response = model.generate_content(
                prompt,
                generation_config=genai.types.GenerationConfig(temperature=0.2),
                safety_settings=[
                    {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
                    {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
                    {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
                    {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
                ]
            )
            st.write("βœ… Response received from AI.")

            try:
                json_response_text = response.text.strip()
                # Remove potential markdown code block fences
                if json_response_text.startswith("```json"):
                    json_response_text = json_response_text[7:]
                if json_response_text.startswith("```"):
                    json_response_text = json_response_text[3:]
                if json_response_text.endswith("```"):
                    json_response_text = json_response_text[:-3]

                # Extract JSON object boundaries
                json_start = json_response_text.find('{')
                json_end = json_response_text.rfind('}') + 1

                if json_start != -1 and json_end != -1 and json_end > json_start:
                    final_json_text = json_response_text[json_start:json_end]
                    insights = json.loads(final_json_text)
                    return insights, None
                else:
                    st.warning("⚠️ Could not find valid JSON object boundaries ({...}) in response. Displaying raw text.")
                    return {"raw_response": response.text}, "AI response did not contain clear JSON object, showing raw text."

            except json.JSONDecodeError as json_err:
                st.error(f"🚨 Error parsing JSON response from AI: {json_err}")
                st.error("Raw AI Response:")
                st.code(response.text, language='text')
                return None, f"AI response was not valid JSON: {json_err}"
            except AttributeError:
                st.error("🚨 Unexpected API response structure.")
                st.code(f"Response object: {response}", language='text')
                try:
                    block_reason = response.prompt_feedback.block_reason
                    if block_reason:
                        return None, f"Content blocked by API. Reason: {block_reason}"
                except Exception:
                    pass
                return None, "Unexpected response structure from API."
            except Exception as e:
                st.error(f"🚨 Unexpected issue processing AI response: {e}")
                try:
                    st.code(f"Response object: {response}", language='text')
                except Exception:
                    pass
                return None, f"Unexpected response structure: {e}"

        except Exception as e:
            st.error(f"🚨 An error occurred during API call: {e}")
            error_msg = f"API call failed: {e}"
            if hasattr(e, 'message'):
                if "429" in e.message:
                    error_msg = "API Quota Exceeded or Rate Limit hit. Check your Google Cloud/AI Studio dashboard."
                elif "API key not valid" in e.message:
                    error_msg = "Invalid Gemini API Key. Please check `.streamlit/secrets.toml`."
                elif "blocked" in e.message.lower():
                    error_msg = "Content blocked due to safety settings. Review input code or adjust safety settings if appropriate."
            elif "block_reason: SAFETY" in str(e):
                error_msg = "Content blocked due to safety settings. Review input code or adjust safety settings if appropriate."

            return None, error_msg

def display_results(results_json, requested_analyses):
    """Renders the analysis results in the Streamlit interface."""
    st.header("πŸ“Š Analysis Report")

    if not isinstance(results_json, dict):
        st.error("Invalid results format received.")
        st.json(results_json)
        return

    if "raw_response" in results_json:
        st.subheader("Raw AI Response (JSON Parsing Failed)")
        st.code(results_json["raw_response"], language='text')
        return

    def display_list_items(items, fields):
        if items:
            for item in items:
                details = []
                for field_key, field_label in fields.items():
                    value = item.get(field_key, 'N/A')
                    if value != 'N/A':
                        details.append(f"**{field_label}:** {value}")
                st.markdown("- " + " - ".join(details))
                # Display multi-line outputs when applicable
                if 'suggestion' in item:
                    st.code(item['suggestion'], language='text')
                elif 'description' in item:
                    st.markdown(f"  > {item['description']}")
                elif 'summary' in item:
                    st.markdown(f"  > {item['summary']}")
        else:
            st.markdown("_No items found for this category._")
        st.divider()

    display_config = {
        "generate_docs": {
            "key": "documentation_suggestions",
            "title": AVAILABLE_ANALYSES["generate_docs"],
            "fields": {"file": "File", "line": "Line"}
        },
        "find_bugs": {
            "key": "potential_bugs",
            "title": AVAILABLE_ANALYSES["find_bugs"],
            "fields": {"file": "File", "line": "Line", "severity": "Severity"}
        },
        "check_style": {
            "key": "style_issues",
            "title": AVAILABLE_ANALYSES["check_style"],
            "fields": {"file": "File", "line": "Line"}
        },
        "summarize_modules": {
            "key": "module_summaries",
            "title": AVAILABLE_ANALYSES["summarize_modules"],
            "fields": {"file": "File"}
        },
        "suggest_refactoring": {
            "key": "refactoring_suggestions",
            "title": AVAILABLE_ANALYSES["suggest_refactoring"],
            "fields": {"file": "File", "line": "Line", "area": "Area"}
        }
    }

    any_results = False
    for analysis_key in requested_analyses:
        if analysis_key in display_config:
            config = display_config[analysis_key]
            st.subheader(config["title"])
            items = results_json.get(config["key"], [])
            display_list_items(items, config["fields"])
            if items:
                any_results = True

    if not any_results:
        st.info("No specific findings were identified in the analysis based on your selections.")

    st.download_button(
        label="Download Full Report (JSON)",
        data=json.dumps(results_json, indent=4),
        file_name="code_audit_report.json",
        mime="application/json"
    )

# --- Streamlit App Main Interface ---
st.set_page_config(page_title="Codebase Audit Assistant", layout="wide")

st.title("πŸ€– Codebase Audit & Documentation Assistant")
st.markdown(f"Upload your codebase (`.zip`) for analysis using **{GEMINI_MODEL_NAME}**.")

# Sidebar controls
with st.sidebar:
    st.header("βš™οΈ Analysis Controls")
    st.session_state.mock_api_call = st.toggle(
        "πŸ§ͺ Enable Mock API Mode (for Testing)",
        value=st.session_state.mock_api_call,
        help="If enabled, uses fake data instead of calling the real Gemini API. Saves cost during testing."
    )
    if st.session_state.mock_api_call:
        st.info("Mock API Mode ACTIVE")
    else:
        st.info("Using REAL Gemini API")

    st.divider()
    st.header("πŸ”Ž Select Analyses")
    selected_analyses = []
    for key, name in AVAILABLE_ANALYSES.items():
        if st.checkbox(name, value=True, key=f"cb_{key}"):
            selected_analyses.append(key)

    st.divider()
    st.header("πŸ“„ How To Use")
    st.info(
        "1. Set API Key in `.streamlit/secrets.toml` (if not using Mock Mode).\n"
        "2. Toggle Mock Mode if needed.\n"
        "3. Select desired analyses.\n"
        "4. Create a **ZIP archive** of your codebase.\n"
        "5. Upload the `.zip` file.\n"
        "6. Click 'Analyze Codebase'.\n"
        "7. Review the report."
    )
    st.info(f"**Note:** Only files with common code extensions ({', '.join(CODE_EXTENSIONS)}) are processed. Analysis might be limited (~{MAX_PROMPT_TOKENS_ESTIMATE:,} est. tokens).")
    st.divider()
    st.warning("⚠️ **Privacy:** Code content is sent to the Google Gemini API if Mock Mode is OFF. Do not upload sensitive code if uncomfortable.")

# Main content area
uploaded_file = st.file_uploader("πŸ“ Upload Codebase ZIP File", type=['zip'], key="file_uploader")
analysis_triggered = False
results_cache = None  # To store results briefly

if uploaded_file:
    st.success(f"βœ… File '{uploaded_file.name}' uploaded.")
    with st.spinner("Inspecting ZIP file..."):
        code_files, total_chars, file_count, ignored_files = process_zip_file(uploaded_file)

    if code_files is not None:
        st.info(f"Found **{file_count}** relevant code files ({total_chars:,} characters). Est. tokens: ~{estimate_token_count(total_chars):,}")
        if ignored_files:
            with st.expander(f"View {len(ignored_files)} Skipped/Ignored Files"):
                st.code("\n".join(ignored_files), language='text')

        analyze_button_disabled = (not selected_analyses or file_count == 0)
        analyze_button_label = "Analyze Codebase" if not analyze_button_disabled else "Select Analyses or Upload Valid Code"
        if st.button(analyze_button_label, type="primary", disabled=analyze_button_disabled):
            analysis_triggered = True
            if not selected_analyses:
                st.warning("Please select at least one analysis type from the sidebar.")
            elif file_count == 0:
                st.warning("No relevant code files found in the ZIP archive to analyze.")
            else:
                st.divider()
                with st.spinner(f"πŸš€ Preparing prompt & contacting AI ({'Mock Mode' if st.session_state.mock_api_call else GEMINI_MODEL_NAME})... This may take time."):
                    analysis_prompt, included_files_in_prompt = construct_analysis_prompt(code_files, selected_analyses)
                    if analysis_prompt and included_files_in_prompt:
                        st.write(f"Analyzing {len(included_files_in_prompt)} files...")
                        results_json, error_message = call_gemini_api(analysis_prompt)
                        results_cache = (results_json, error_message)
                    elif not included_files_in_prompt:
                        results_cache = (None, "Could not proceed: No files included in prompt (check token limits/errors).")
                    else:
                        results_cache = (None, "Failed to generate analysis prompt.")
    else:
        # Error during ZIP processing (error already displayed)
        pass

if analysis_triggered and results_cache:
    results_json, error_message = results_cache
    st.divider()
    if error_message:
        st.error(f"Analysis Failed: {error_message}")
        if results_json and isinstance(results_json, dict) and "raw_response" in results_json:
            st.subheader("Raw AI Response")
            st.code(results_json["raw_response"], language='text')
    elif results_json:
        display_results(results_json, selected_analyses)
    else:
        st.error("Analysis did not return results or an unknown error occurred.")
elif not uploaded_file:
    st.info("Upload a ZIP file containing your source code to begin.")

st.divider()
st.markdown("_Assistant powered by Google Gemini._")