File size: 23,069 Bytes
df481b9
f025bf0
 
 
bc80edf
f025bf0
 
95b3eeb
f025bf0
 
 
95b3eeb
 
f025bf0
 
95b3eeb
f025bf0
 
 
 
 
 
95b3eeb
f025bf0
3a80282
 
95b3eeb
 
 
 
 
 
 
3a80282
f025bf0
3a80282
5477235
3a80282
95b3eeb
3a80282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95b3eeb
5477235
3a80282
95b3eeb
5477235
3a80282
 
f025bf0
 
 
95b3eeb
3a80282
bc80edf
95b3eeb
 
 
 
f025bf0
 
 
 
95b3eeb
 
bc80edf
 
95b3eeb
 
 
 
 
 
 
 
3a80282
f025bf0
 
 
 
 
 
95b3eeb
f025bf0
95b3eeb
f025bf0
 
95b3eeb
f025bf0
5477235
 
f025bf0
 
 
 
 
5477235
f025bf0
5477235
3a80282
f025bf0
95b3eeb
 
 
f025bf0
95b3eeb
f025bf0
 
bc80edf
95b3eeb
f025bf0
 
 
95b3eeb
 
 
 
 
 
f025bf0
 
 
95b3eeb
 
 
f025bf0
95b3eeb
 
 
 
 
 
 
 
3a80282
f025bf0
 
 
 
 
 
 
 
95b3eeb
f025bf0
 
 
95b3eeb
3a80282
f025bf0
95b3eeb
 
f025bf0
 
 
 
95b3eeb
 
f025bf0
95b3eeb
f025bf0
3a80282
f025bf0
3a80282
f025bf0
3a80282
f025bf0
3a80282
f025bf0
3a80282
f025bf0
3a80282
95b3eeb
3a80282
 
f025bf0
 
 
 
 
 
 
 
 
 
 
 
95b3eeb
 
f025bf0
 
 
95b3eeb
f025bf0
 
 
95b3eeb
3a80282
95b3eeb
 
 
3a80282
 
 
5477235
95b3eeb
 
 
3a80282
95b3eeb
5477235
3a80282
95b3eeb
3a80282
5477235
 
 
 
3a80282
f025bf0
95b3eeb
 
 
 
3a80282
 
 
 
 
 
 
 
 
 
95b3eeb
 
 
 
3a80282
 
 
 
 
5477235
 
3a80282
 
 
 
 
 
 
 
 
95b3eeb
3a80282
 
 
 
 
 
95b3eeb
5477235
 
 
 
 
 
 
95b3eeb
3a80282
 
5477235
 
 
 
3a80282
 
95b3eeb
3a80282
 
5477235
 
95b3eeb
5477235
95b3eeb
5477235
95b3eeb
5477235
95b3eeb
3a80282
f025bf0
 
95b3eeb
f025bf0
 
 
3a80282
f025bf0
 
 
 
 
 
3a80282
95b3eeb
 
 
 
 
3a80282
 
95b3eeb
3a80282
 
 
 
95b3eeb
 
 
 
5477235
95b3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a80282
95b3eeb
5477235
3a80282
f025bf0
5477235
 
 
 
 
f025bf0
 
 
95b3eeb
 
f025bf0
3a80282
 
95b3eeb
 
3a80282
 
95b3eeb
3a80282
 
95b3eeb
 
3a80282
95b3eeb
10922c3
95b3eeb
 
 
 
 
df481b9
f025bf0
3a80282
95b3eeb
 
 
 
 
f025bf0
 
3a80282
f025bf0
5477235
 
3a80282
 
 
95b3eeb
 
 
 
 
3a80282
95b3eeb
3a80282
95b3eeb
3a80282
95b3eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a80282
 
95b3eeb
df481b9
95b3eeb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import streamlit as st
import google.generativeai as genai
import zipfile
import io
import json
import os
from pathlib import Path
import time

# --- Configuration ---
GEMINI_MODEL_NAME = "gemini-2.5-pro-preview-03-25"
MAX_PROMPT_TOKENS_ESTIMATE = 800000
RESULTS_PAGE_SIZE = 25  # Number of items to show per category initially

AVAILABLE_ANALYSES = {
    # ... (keep the same)
    "generate_docs": "Generate Missing Docstrings/Comments",
    "find_bugs": "Identify Potential Bugs & Anti-patterns",
    "check_style": "Check Style Guide Compliance (General)",
    "summarize_modules": "Summarize Complex Modules/Files",
    "suggest_refactoring": "Suggest Refactoring Opportunities"
}
CODE_EXTENSIONS = {'.py', '.js', '.java', '.c', '.cpp', '.h', '.cs', '.go', '.rb', '.php', '.swift', '.kt', '.ts', '.html', '.css', '.scss', '.sql'}

# --- Session State Initialization ---
if 'mock_api_call' not in st.session_state:
    st.session_state.mock_api_call = False
if 'analysis_results' not in st.session_state:
    st.session_state.analysis_results = None  # Store results here
if 'error_message' not in st.session_state:
    st.session_state.error_message = None
if 'analysis_requested' not in st.session_state:
    st.session_state.analysis_requested = False  # Flag to know when analysis is done

# --- Gemini API Setup ---
model = None

def initialize_gemini_model():
    """Initializes the Gemini API model unless running in mock mode."""
    global model
    if model is None and not st.session_state.mock_api_call:
        try:
            if 'GEMINI_API_KEY' not in st.secrets:
                st.error("🚨 Gemini API Key not found. Add it to `.streamlit/secrets.toml`.")
                st.stop()
            genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
            model = genai.GenerativeModel(GEMINI_MODEL_NAME)
            print("Gemini Model Initialized.")
            return True
        except Exception as e:
            st.error(f"🚨 Error initializing Gemini SDK: {e}")
            st.stop()
            return False
    elif st.session_state.mock_api_call:
        # Running in Mock Mode. Skipping Gemini initialization.
        return True  # Allow proceeding in mock mode
    elif model is not None:
        # Gemini Model already initialized.
        return True
    return False

# --- Helper Functions ---

def estimate_token_count(text):
    """Roughly estimate token count (assuming ~3 characters per token)."""
    return len(text) // 3

# --- OPTIMIZATION: Cache ZIP processing ---
@st.cache_data(max_entries=5)  # Cache results for recent uploads
def process_zip_file_cached(file_id, file_size, file_content_bytes):
    """Extracts code files and their content. Cached function."""
    code_files = {}
    total_chars = 0
    file_count = 0
    ignored_files = []
    status_placeholder = st.empty()  # For progress bar
    progress_bar = status_placeholder.progress(0)

    try:
        with zipfile.ZipFile(io.BytesIO(file_content_bytes), 'r') as zip_ref:
            members = zip_ref.infolist()
            total_members = len(members)
            for i, member in enumerate(members):
                # Update progress bar periodically (every 10 files)
                if i % 10 == 0:
                    progress_bar.progress(int((i / total_members) * 100))

                if member.is_dir() or any(part.startswith('.') for part in Path(member.filename).parts) or '__' in member.filename:
                    continue

                file_path = Path(member.filename)
                if file_path.suffix.lower() in CODE_EXTENSIONS:
                    try:
                        with zip_ref.open(member) as file:
                            file_bytes = file.read()
                            try:
                                content = file_bytes.decode('utf-8')
                            except UnicodeDecodeError:
                                try:
                                    content = file_bytes.decode('latin-1')
                                except Exception as decode_err:
                                    ignored_files.append(f"{member.filename} (Decode Error: {decode_err})")
                                    continue

                            code_files[member.filename] = content
                            total_chars += len(content)
                            file_count += 1
                    except Exception as read_err:
                        ignored_files.append(f"{member.filename} (Read Error: {read_err})")
                else:
                    if not (any(part.startswith('.') for part in Path(member.filename).parts) or '__' in member.filename):
                        ignored_files.append(f"{member.filename} (Skipped Extension: {file_path.suffix})")

            progress_bar.progress(100)  # Ensure it completes
            status_placeholder.empty()  # Remove progress bar after completion

    except zipfile.BadZipFile:
        status_placeholder.empty()
        st.error("🚨 Invalid or corrupted ZIP file.")
        return None, 0, 0, []
    except Exception as e:
        status_placeholder.empty()
        st.error(f"🚨 Error processing ZIP file: {e}")
        return None, 0, 0, []

    if file_count == 0 and not ignored_files:
        st.warning("No files with recognized code extensions found in the ZIP.")
    elif file_count == 0 and ignored_files:
        st.warning("No files with recognized code extensions found. Some files were skipped.")

    print(f"Cache miss or new file: Processed ZIP {file_id}")  # Debug print
    return code_files, total_chars, file_count, ignored_files

def construct_analysis_prompt(code_files_dict, requested_analyses):
    """Constructs the prompt for Gemini, including code content and JSON structure request."""
    prompt_parts = ["Analyze the following codebase provided as a collection of file paths and their content.\n\n"]
    current_token_estimate = estimate_token_count(prompt_parts[0])
    included_files = []

    # Use join for potentially faster concatenation
    code_segments = []

    # Provide feedback for large codebases
    prompt_status = st.empty()
    if len(code_files_dict) > 50:
        prompt_status.write("Constructing prompt (processing files)...")

    for filename, content in code_files_dict.items():
        file_marker = f"--- START FILE: {filename} ---\n"
        file_content = f"{content}\n"
        file_end_marker = f"--- END FILE: {filename} ---\n\n"
        segment = file_marker + file_content + file_end_marker
        segment_token_estimate = estimate_token_count(segment)

        if current_token_estimate + segment_token_estimate <= MAX_PROMPT_TOKENS_ESTIMATE:
            code_segments.append(segment)
            current_token_estimate += segment_token_estimate
            included_files.append(filename)
        else:
            st.warning(f"⚠️ Codebase may exceed context window estimate (~{MAX_PROMPT_TOKENS_ESTIMATE} tokens). Analysis performed only on the first {len(included_files)} files ({current_token_estimate:,} tokens).")
            break

    prompt_status.empty()  # Clear status message

    if not included_files:
        st.error("🚨 No code files could be included within the estimated token limit.")
        return None, []

    concatenated_code = "".join(code_segments)
    prompt_parts.append(concatenated_code)

    # Generate the expected JSON structure description based on selected analyses
    json_structure_description = "{\n"
    structure_parts = []
    if "generate_docs" in requested_analyses:
        structure_parts.append('    "documentation_suggestions": [{"file": "path/to/file", "line": number, "suggestion": "Suggested docstring/comment"}]')
    if "find_bugs" in requested_analyses:
        structure_parts.append('    "potential_bugs": [{"file": "path/to/file", "line": number, "description": "Description of potential bug/anti-pattern", "severity": "High/Medium/Low"}]')
    if "check_style" in requested_analyses:
        structure_parts.append('    "style_issues": [{"file": "path/to/file", "line": number, "description": "Description of style deviation"}]')
    if "summarize_modules" in requested_analyses:
        structure_parts.append('    "module_summaries": [{"file": "path/to/file", "summary": "One-paragraph summary of the file purpose/functionality"}]')
    if "suggest_refactoring" in requested_analyses:
        structure_parts.append('    "refactoring_suggestions": [{"file": "path/to/file", "line": number, "area": "e.g., function name, class name", "suggestion": "Description of refactoring suggestion"}]')

    json_structure_description += ",\n".join(structure_parts)
    json_structure_description += "\n}"

    prompt_footer = f"""
**Analysis Task:**
Perform the analyses corresponding to the keys present in the JSON structure below, based *only* on the provided code files ({', '.join(included_files)}).

**Output Format:**
Respond ONLY with a single, valid JSON object adhering strictly to the following structure. If no issues/suggestions are found for a category, provide an empty list `[]`. Do not include explanations outside the JSON structure.

{json_structure_description}

**JSON Output Only:**
"""
    prompt_parts.append(prompt_footer)
    full_prompt = "".join(prompt_parts)
    return full_prompt, included_files

def call_gemini_api(prompt):
    """Calls the Gemini API or returns mock data based on session state."""
    if not prompt:
        return None, "Prompt generation failed."

    # MOCK MODE LOGIC
    if st.session_state.mock_api_call:
        st.info("MOCK MODE: Simulating API call...")
        st.write("...")  # Minimal feedback in mock mode
        time.sleep(1)  # Shorter mock delay

        mock_json_response = json.dumps({
            "documentation_suggestions": [{"file": "mock/core.py", "line": 15, "suggestion": "def process_data(data):\n    \"\"\"Processes the input data using mock logic.\"\"\""}],
            "potential_bugs": [{"file": "mock/utils.py", "line": 22, "description": "Potential division by zero if denominator is not checked.", "severity": "Medium"}],
            "style_issues": [],
            "module_summaries": [],
            "refactoring_suggestions": []
        })
        st.success("Mock response generated.")
        return json.loads(mock_json_response), None

    # REAL API CALL LOGIC
    else:
        if not initialize_gemini_model():
            return None, "Gemini Model Initialization Failed."
        if model is None:
            return None, "Gemini model not available."

        try:
            api_status = st.empty()
            token_estimate = estimate_token_count(prompt)
            api_status.info(f"πŸ“‘ Sending request to {GEMINI_MODEL_NAME} (Estimated prompt tokens: {token_estimate:,})... This can take several minutes depending on code size and model load.")
            start_time = time.time()
            response = model.generate_content(
                prompt,
                generation_config=genai.types.GenerationConfig(temperature=0.2),
                safety_settings=[
                    {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
                    {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
                    {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
                    {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
                ]
            )
            end_time = time.time()
            api_status.success(f"βœ… Response received from AI in {end_time - start_time:.2f} seconds.")
            time.sleep(1)
            api_status.empty()

            try:
                json_response_text = response.text.strip()
                if json_response_text.startswith("```json"):
                    json_response_text = json_response_text[7:]
                if json_response_text.startswith("```"):
                    json_response_text = json_response_text[3:]
                if json_response_text.endswith("```"):
                    json_response_text = json_response_text[:-3]
                json_start = json_response_text.find('{')
                json_end = json_response_text.rfind('}') + 1
                if json_start != -1 and json_end != -1 and json_end > json_start:
                    final_json_text = json_response_text[json_start:json_end]
                    insights = json.loads(final_json_text)
                    return insights, None
                else:
                    st.warning("⚠️ Could not find valid JSON object boundaries ({...}) in response.")
                    return {"raw_response": response.text}, "AI response did not contain clear JSON object, showing raw text."
            except json.JSONDecodeError as json_err:
                st.error(f"🚨 Error parsing JSON response from AI: {json_err}")
                st.code(response.text, language='text')
                return None, f"AI response was not valid JSON: {json_err}"
            except AttributeError:
                st.error("🚨 Unexpected API response structure (AttributeError).")
                st.code(f"Response object: {response}", language='text')
                try:
                    block_reason = response.prompt_feedback.block_reason
                    if block_reason:
                        return None, f"Content blocked by API. Reason: {block_reason}"
                except Exception:
                    pass
                return None, "Unexpected response structure from API (AttributeError)."
            except Exception as e:
                st.error(f"🚨 Unexpected issue processing AI response: {e}")
                try:
                    st.code(f"Response object: {response}", language='text')
                except Exception:
                    pass
                return None, f"Unexpected response structure: {e}"
        except Exception as e:
            api_status.empty()
            st.error(f"🚨 An error occurred during API call: {e}")
            error_msg = f"API call failed: {e}"
            if hasattr(e, 'message'):
                if "429" in e.message:
                    error_msg = "API Quota Exceeded or Rate Limit hit."
                elif "API key not valid" in e.message:
                    error_msg = "Invalid Gemini API Key."
                elif "blocked" in e.message.lower():
                    error_msg = "Content blocked due to safety settings."
            elif "block_reason: SAFETY" in str(e):
                error_msg = "Content blocked due to safety settings."
            return None, error_msg

def display_results(results_json, requested_analyses):
    """Renders the analysis results with pagination."""
    st.header("πŸ“Š Analysis Report")
    if not isinstance(results_json, dict):
        st.error("Invalid results format received.")
        st.json(results_json)
        return
    if "raw_response" in results_json:
        st.subheader("Raw AI Response (JSON Parsing Failed)")
        st.code(results_json["raw_response"], language='text')
        return

    display_config = {
        "generate_docs": {"key": "documentation_suggestions", "title": AVAILABLE_ANALYSES["generate_docs"], "fields": {"file": "File", "line": "Line"}},
        "find_bugs": {"key": "potential_bugs", "title": AVAILABLE_ANALYSES["find_bugs"], "fields": {"file": "File", "line": "Line", "severity": "Severity"}},
        "check_style": {"key": "style_issues", "title": AVAILABLE_ANALYSES["check_style"], "fields": {"file": "File", "line": "Line"}},
        "summarize_modules": {"key": "module_summaries", "title": AVAILABLE_ANALYSES["summarize_modules"], "fields": {"file": "File"}},
        "suggest_refactoring": {"key": "refactoring_suggestions", "title": AVAILABLE_ANALYSES["suggest_refactoring"], "fields": {"file": "File", "line": "Line", "area": "Area"}}
    }

    any_results_found = False
    for analysis_key in requested_analyses:
        if analysis_key in display_config:
            config = display_config[analysis_key]
            items = results_json.get(config["key"], [])
            total_items = len(items)

            st.subheader(f"{config['title']} ({total_items} found)")

            if items:
                any_results_found = True
                state_key = f"visible_{analysis_key}"
                if state_key not in st.session_state:
                    st.session_state[state_key] = RESULTS_PAGE_SIZE

                visible_count = st.session_state[state_key]
                items_to_display = items[:visible_count]

                for item in items_to_display:
                    details = []
                    for field_key, field_label in config["fields"].items():
                        value = item.get(field_key, 'N/A')
                        if value != 'N/A':
                            details.append(f"**{field_label}:** `{value}`" if field_key == 'file' else f"**{field_label}:** {value}")
                    st.markdown("- " + " - ".join(details))
                    if 'suggestion' in item:
                        st.code(item['suggestion'], language='text')
                    elif 'description' in item:
                        st.markdown(f"  > {item['description']}")
                    elif 'summary' in item:
                        st.markdown(f"  > {item['summary']}")

                if total_items > visible_count:
                    if st.button(f"Show more ({total_items - visible_count} remaining)", key=f"more_{analysis_key}"):
                        st.session_state[state_key] += RESULTS_PAGE_SIZE
                        st.rerun()
            else:
                st.markdown("_No items found for this category._")
            st.divider()

    if not any_results_found:
        st.info("No specific findings were identified in the analysis based on your selections.")

    st.download_button(
        label="Download Full Report (JSON)",
        data=json.dumps(results_json, indent=4),
        file_name="code_audit_report.json",
        mime="application/json"
    )

# --- Streamlit App Main Interface ---
st.set_page_config(page_title="Codebase Audit Assistant", layout="wide")
st.title("πŸ€– Codebase Audit Assistant")
st.markdown(f"Upload codebase (`.zip`) for analysis via **{GEMINI_MODEL_NAME}**.")

with st.sidebar:
    st.header("βš™οΈ Analysis Controls")
    st.session_state.mock_api_call = st.toggle("πŸ§ͺ Enable Mock API Mode", value=st.session_state.mock_api_call, help="Use fake data instead of calling Gemini API.")
    st.info("Mock API Mode ACTIVE" if st.session_state.mock_api_call else "Using REAL Gemini API")
    st.divider()
    st.header("πŸ”Ž Select Analyses")
    selected_analyses = [key for key, name in AVAILABLE_ANALYSES.items() if st.checkbox(name, value=True, key=f"cb_{key}")]
    st.divider()
    st.header("πŸ“„ How To Use")
    st.info("1. Set API Key (if not in Mock Mode).\n2. Toggle Mock Mode if needed.\n3. Select analyses.\n4. Create & Upload a **ZIP** of your code.\n5. Click 'Analyze Codebase'.\n6. Review the report.")
    st.info(f"Note: Only common code extensions are supported. Analysis is limited by token estimates (~{MAX_PROMPT_TOKENS_ESTIMATE:,} estimated tokens).")
    st.divider()
    st.warning("⚠️ **Privacy:** Code is sent to the Google API if Mock Mode is OFF.")

uploaded_file = st.file_uploader("πŸ“ Upload Codebase ZIP File", type=['zip'], key="file_uploader",
                                 on_change=lambda: st.session_state.update(analysis_results=None, error_message=None, analysis_requested=False))

analysis_button_placeholder = st.empty()  # Placeholder for the button
results_placeholder = st.container()        # Container for results display

if uploaded_file:
    st.success(f"βœ… File '{uploaded_file.name}' uploaded.")

    uploaded_file_bytes = uploaded_file.getvalue()
    file_id = f"{uploaded_file.name}-{uploaded_file.size}"

    code_files, total_chars, file_count, ignored_files = process_zip_file_cached(file_id, uploaded_file.size, uploaded_file_bytes)

    if code_files is not None:
        st.info(f"Found **{file_count}** relevant code files ({total_chars:,} characters). Est. tokens: ~{estimate_token_count(total_chars):,}")
        if ignored_files:
            with st.expander(f"View {len(ignored_files)} Skipped/Ignored Files"):
                st.code("\n".join(ignored_files), language='text')

        analyze_button_disabled = (not selected_analyses or file_count == 0)
        analyze_button_label = "Analyze Codebase" if not analyze_button_disabled else "Select Analyses or Upload Valid Code"
        if analysis_button_placeholder.button(analyze_button_label, type="primary", disabled=analyze_button_disabled):
            st.session_state.analysis_requested = True
            st.session_state.analysis_results = None
            st.session_state.error_message = None

            if not selected_analyses:
                st.warning("Please select analysis types.")
            elif file_count == 0:
                st.warning("No relevant code files found.")
            else:
                with results_placeholder:
                    with st.spinner(f"πŸš€ Preparing prompt & contacting AI ({'Mock Mode' if st.session_state.mock_api_call else GEMINI_MODEL_NAME})... Please wait."):
                        analysis_prompt, included_files_in_prompt = construct_analysis_prompt(code_files, selected_analyses)
                        if analysis_prompt and included_files_in_prompt:
                            results_json, error_msg = call_gemini_api(analysis_prompt)
                            st.session_state.analysis_results = results_json
                            st.session_state.error_message = error_msg
                        elif not included_files_in_prompt:
                            st.session_state.error_message = "Could not proceed: No files included (check token limits/errors)."
                        else:
                            st.session_state.error_message = "Failed to generate analysis prompt."
                st.rerun()

if st.session_state.analysis_requested:
    with results_placeholder:
        st.divider()
        if st.session_state.error_message:
            st.error(f"Analysis Failed: {st.session_state.error_message}")
            if isinstance(st.session_state.analysis_results, dict) and "raw_response" in st.session_state.analysis_results:
                st.subheader("Raw AI Response")
                st.code(st.session_state.analysis_results["raw_response"], language='text')
        elif st.session_state.analysis_results:
            display_results(st.session_state.analysis_results, selected_analyses)
        else:
            st.info("Analysis initiated, but no results or errors were stored. Please try again.")

elif not uploaded_file:
    results_placeholder.info("Upload a ZIP file containing your source code to begin.")

results_placeholder.divider()
results_placeholder.markdown("_Assistant powered by Google Gemini._")