File size: 8,600 Bytes
4372b0a
36986a7
4372b0a
590f907
517de74
5e95a20
 
 
a7d3db7
d26962d
517de74
590f907
36986a7
94febc8
36986a7
590f907
2b2ae99
36986a7
590f907
36986a7
2b2ae99
 
978c4cf
4372b0a
 
a4f7e5c
36986a7
 
7e2c73b
 
36986a7
7e2c73b
 
 
36986a7
7e2c73b
5e95a20
7e2c73b
36986a7
7e2c73b
fbb4b8d
36986a7
7e2c73b
 
36986a7
 
b6ee928
 
4372b0a
 
 
 
 
b6ee928
a4f7e5c
b6ee928
36986a7
 
a4f7e5c
fbb4b8d
36986a7
 
 
 
 
 
fbb4b8d
36986a7
978c4cf
4372b0a
36986a7
 
 
42d374e
590f907
 
 
42d374e
36986a7
 
a4f7e5c
36986a7
a4f7e5c
7e2c73b
 
 
 
 
 
 
36986a7
590f907
4372b0a
5e95a20
36986a7
 
 
 
4372b0a
36986a7
 
590f907
d26962d
590f907
 
36986a7
 
 
 
590f907
36986a7
590f907
 
 
 
 
36986a7
 
 
 
 
 
590f907
 
 
 
 
36986a7
590f907
 
 
 
 
 
 
 
 
36986a7
590f907
 
36986a7
 
 
 
 
590f907
 
36986a7
 
 
 
 
590f907
36986a7
 
 
590f907
36986a7
590f907
 
36986a7
590f907
36986a7
 
 
 
590f907
36986a7
590f907
 
36986a7
590f907
36986a7
590f907
 
 
 
 
 
36986a7
590f907
36986a7
 
590f907
 
 
 
 
 
36986a7
590f907
 
 
 
 
 
36986a7
590f907
 
36986a7
 
 
590f907
 
 
 
 
 
 
36986a7
 
 
590f907
 
36986a7
 
978c4cf
36986a7
5e95a20
40a1d7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/env python3
# MedGenesis AI – Streamlit frontend (OpenAI / Gemini)

import os, pathlib, asyncio, re
from pathlib import Path
import streamlit as st
import pandas as pd
import plotly.express as px
from fpdf import FPDF
from streamlit_agraph import agraph

from mcp.orchestrator    import orchestrate_search, answer_ai_question
from mcp.workspace       import get_workspace, save_query
from mcp.knowledge_graph import build_agraph
from mcp.graph_metrics   import build_nx, get_top_hubs, get_density
from mcp.alerts          import check_alerts

# ── Streamlit telemetry off ─────────────────────────────────────────
os.environ["STREAMLIT_DATA_DIR"]               = "/tmp/.streamlit"
os.environ["XDG_STATE_HOME"]                   = "/tmp"
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
pathlib.Path("/tmp/.streamlit").mkdir(parents=True, exist_ok=True)

ROOT = Path(__file__).parent
LOGO = ROOT / "assets" / "logo.png"

# ── PDF helper ──────────────────────────────────────────────────────
def _latin1(txt: str) -> str:
    return txt.encode("latin-1", "replace").decode("latin-1")

def _pdf(papers):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Helvetica", size=11)
    pdf.cell(200, 8, _latin1("MedGenesis AI – Results"), ln=True, align="C")
    pdf.ln(3)
    for i, p in enumerate(papers, 1):
        pdf.set_font("Helvetica", "B", 11)
        pdf.multi_cell(0, 7, _latin1(f"{i}. {p['title']}"))
        pdf.set_font("Helvetica", "", 9)
        body = f"{p['authors']}\n{p['summary']}\n{p['link']}\n"
        pdf.multi_cell(0, 6, _latin1(body)); pdf.ln(1)
    return pdf.output(dest="S").encode("latin-1", "replace")

# ── Sidebar ────────────────────────────────────────────────────────
def _sidebar_workspace():
    with st.sidebar:
        st.header("πŸ—‚οΈ Workspace")
        ws = get_workspace()
        if not ws:
            st.info("Run a search then press **Save** to populate this list.")
            return
        for i, item in enumerate(ws, 1):
            with st.expander(f"{i}. {item['query']}"):
                st.write(item["result"]["ai_summary"])

# ── Main UI ────────────────────────────────────────────────────────
def render_ui():
    st.set_page_config("MedGenesis AI", layout="wide")

    # session state
    st.session_state.setdefault("result", None)
    st.session_state.setdefault("last_query", "")
    st.session_state.setdefault("last_llm", "")
    st.session_state.setdefault("followup", "")
    st.session_state.setdefault("answer", "")

    _sidebar_workspace()

    c1, c2 = st.columns([0.15, 0.85])
    if LOGO.exists(): c1.image(str(LOGO), width=105)
    c2.markdown("## 🧬 **MedGenesis AI**")
    c2.caption("Multi-source biomedical assistant Β· OpenAI / Gemini")

    llm   = st.radio("LLM engine", ["openai", "gemini"], horizontal=True)
    query = st.text_input("Enter biomedical question",
                          placeholder="e.g. CRISPR glioblastoma therapy")

    # Alerts
    if get_workspace():
        try:
            news = asyncio.run(check_alerts([w["query"] for w in get_workspace()]))
            if news:
                with st.sidebar:
                    st.subheader("πŸ”” New papers")
                    for q, lnks in news.items():
                        st.write(f"**{q}** – {len(lnks)} new")
        except Exception:
            pass

    # Run search
    if st.button("Run Search πŸš€") and query.strip():
        with st.spinner("Collecting literature & biomedical data …"):
            res = asyncio.run(orchestrate_search(query, llm=llm))
        st.session_state.update(
            result=res, last_query=query, last_llm=llm,
            followup="", answer=""
        )
        st.success(f"Completed with **{res['llm_used'].title()}**")

    res = st.session_state.result
    if not res:
        st.info("Enter a question and press **Run Search πŸš€**")
        return

    # ── Tabs ───────────────────────────────────────────────────────
    tabs = st.tabs(
        ["Results", "Genes", "Trials", "Graph", "Metrics", "Visuals"]
    )

    # Results
    with tabs[0]:
        for i, p in enumerate(res["papers"], 1):
            st.markdown(f"**{i}. [{p['title']}]({p['link']})**  *{p['authors']}*")
            st.write(p["summary"])
        c1, c2 = st.columns(2)
        c1.download_button("CSV",
                           pd.DataFrame(res["papers"]).to_csv(index=False),
                           "papers.csv", "text/csv")
        c2.download_button("PDF", _pdf(res["papers"]),
                           "papers.pdf", "application/pdf")
        if st.button("πŸ’Ύ Save"):
            save_query(st.session_state.last_query, res)
            st.success("Saved to workspace")

        st.subheader("UMLS concepts")
        for c in res["umls"]:
            if isinstance(c, dict) and c.get("cui"):
                st.write(f"- **{c['name']}** ({c['cui']})")

        st.subheader("OpenFDA safety")
        for d in res["drug_safety"]:
            st.json(d)

        st.subheader("AI summary")
        st.info(res["ai_summary"])

    # Genes
    with tabs[1]:
        st.header("Gene / Variant signals")
        if res["genes_rich"]:
            for g in res["genes_rich"]:
                st.write(f"- **{g.get('symbol', g.get('approvedSymbol','?'))}**"
                         f" – {g.get('summary','')[:160]}…")
        else:
            st.info("No gene hits (rate-limited or none found).")

        if res["expr_atlas"]:
            st.plotly_chart(px.bar(
                res["expr_atlas"][0].get("expressions", [])[:10],
                x="assayName", y="value", title="Top tissues (Expression Atlas)"
            ))

        if res["cbio_variants"]:
            st.markdown("### cBioPortal cohort variants")
            st.json(res["cbio_variants"][0][:15])

    # Trials
    with tabs[2]:
        st.header("Clinical trials")
        if not res["clinical_trials"]:
            st.info("No trials (rate-limited or none found).")
        for t in res["clinical_trials"]:
            st.markdown(f"**{t['NCTId'][0]}** – {t['BriefTitle'][0]}")
            st.write(f"Phase {t.get('Phase',[''])[0]} | "
                     f"Status {t['OverallStatus'][0]}")

    # Graph
    with tabs[3]:
        nodes, edges, cfg = build_agraph(
            res["papers"], res["umls"], res["drug_safety"]
        )
        hl = st.text_input("Highlight node:", key="hl")
        if hl:
            pat = re.compile(re.escape(hl), re.I)
            for n in nodes:
                n.color = "#f1c40f" if pat.search(n.label) else "#d3d3d3"
        agraph(nodes, edges, cfg)

    # Metrics
    with tabs[4]:
        G = build_nx([n.__dict__ for n in nodes],
                     [e.__dict__ for e in edges])
        st.metric("Density", f"{get_density(G):.3f}")
        st.markdown("**Top hubs**")
        for nid, sc in get_top_hubs(G):
            lab = next((n.label for n in nodes if n.id == nid), nid)
            st.write(f"- {lab}  {sc:.3f}")

    # Visuals
    with tabs[5]:
        years = [p["published"] for p in res["papers"] if p.get("published")]
        if years:
            st.plotly_chart(px.histogram(years, nbins=12,
                                         title="Publication Year"))

    # Follow-up QA
    st.markdown("---")
    st.text_input("Ask follow-up question:",
                  key="followup", placeholder="e.g. Any phase III trials recruiting now?")
    def _on_ask():
        q = st.session_state.followup.strip()
        if not q:
            st.warning("Please type a question first.")
            return
        with st.spinner("Querying LLM …"):
            ans = asyncio.run(
                answer_ai_question(q,
                                   context=st.session_state.last_query,
                                   llm=st.session_state.last_llm)
            )
        st.session_state.answer = ans["answer"]

    st.button("Ask AI", on_click=_on_ask)
    if st.session_state.answer:
        st.write(st.session_state.answer)

# entry-point
if __name__ == "__main__":
    render_ui()