Spaces:
Running
Running
File size: 11,046 Bytes
09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 85e6b5b 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f d576bd9 a1bb249 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 85e6b5b 09db53f 85e6b5b 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 85e6b5b 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 85e6b5b 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f 1e0350f 09db53f a1bb249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# Drug Repurposing Advisor: A Multi-Agent Workflow Example
# This example uses dummy data for demonstration.
# In a production system, replace the dummy data with real pharmaceutical databases.
import os
import json
import requests
import streamlit as st
from typing import List, Union, Tuple
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph, START
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence
# Dummy data for drug mechanism research and clinical trial outcomes
drug_mechanism_texts = [
"Drug A: Inhibits enzyme X and modulates receptor Y; potential anti-inflammatory effects.",
"Drug B: Blocks ion channel Z; has been shown to reduce oxidative stress in preclinical models.",
"Drug C: Activates nuclear receptor W; exhibits neuroprotective properties."
]
clinical_trials_texts = [
"Trial 1: Drug A repurposed for rheumatoid arthritis showed a 30% improvement in joint function.",
"Trial 2: Drug B evaluated in a pilot study for neurodegenerative disorders demonstrated a reduction in symptom severity.",
"Trial 3: Drug C tested in a phase II trial for multiple sclerosis reported significant reduction in relapse rates."
]
# Text splitting settings
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
mechanism_docs = splitter.create_documents(drug_mechanism_texts)
clinical_docs = splitter.create_documents(clinical_trials_texts)
# Here you would typically create vector embeddings and vectorstores (e.g., using ChromaDB)
# For demonstration, we define simple retriever functions that return dummy results.
def mechanism_retriever(query: str) -> str:
# Dummy search: return first document that mentions a keyword from the query
for doc in drug_mechanism_texts:
if any(word.lower() in doc.lower() for word in query.split()):
return f"[Mechanism Doc]: {doc}"
return "No relevant mechanism data found."
def clinical_retriever(query: str) -> str:
for doc in clinical_trials_texts:
if any(word.lower() in doc.lower() for word in query.split()):
return f"[Clinical Trial Doc]: {doc}"
return "No relevant clinical trial data found."
# Define tools using a simple wrapper function
def create_retriever_tool(retriever_func, tool_name: str, description: str):
def tool(query: str):
return retriever_func(query)
# Mimic a tool message (in a real system, you would wrap this in a ToolMessage object)
tool.__name__ = tool_name
tool.description = description
return tool
mechanism_tool = create_retriever_tool(
mechanism_retriever,
"mechanism_db_tool",
"Search drug mechanism data for repurposing insights."
)
clinical_tool = create_retriever_tool(
clinical_retriever,
"clinical_db_tool",
"Search clinical trial outcomes for repurposing evidence."
)
tools = [mechanism_tool, clinical_tool]
# Define the AgentState type for our workflow
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
# Agent function: Classifies queries as targeting drug mechanisms or clinical outcomes
def agent(state: AgentState):
print("---CALL AGENT---")
messages = state["messages"]
user_message = messages[0].content if not isinstance(messages[0], tuple) else messages[0][1]
# Build a prompt to classify the query
prompt = f"""Given the user question: "{user_message}"
If the question is about the molecular mechanism or pharmacodynamics, respond EXACTLY in this format:
SEARCH_MECHANISM: <search terms>
If it's about clinical trial outcomes, efficacy, or safety evidence, respond EXACTLY in this format:
SEARCH_CLINICAL: <search terms>
Otherwise, answer directly with general repurposing insights.
"""
# (Here we simulate a call to DeepSeek-R1 using a dummy response)
# In a real implementation, make an API call to DeepSeek-R1.
if "mechanism" in user_message.lower() or "how it works" in user_message.lower():
response_text = f"SEARCH_MECHANISM: {user_message}"
elif "trial" in user_message.lower() or "efficacy" in user_message.lower() or "safety" in user_message.lower():
response_text = f"SEARCH_CLINICAL: {user_message}"
else:
response_text = "The system did not classify your query. Please rephrase to focus on drug mechanism or clinical data."
print("Agent response:", response_text)
# Format response into expected tool call format
if "SEARCH_MECHANISM:" in response_text:
query = response_text.split("SEARCH_MECHANISM:")[1].strip()
result = mechanism_tool(query)
return {"messages": [AIMessage(content=f'Action: mechanism_db_tool\n{{"query": "{query}"}}\n\nResults: {result}')]}
elif "SEARCH_CLINICAL:" in response_text:
query = response_text.split("SEARCH_CLINICAL:")[1].strip()
result = clinical_tool(query)
return {"messages": [AIMessage(content=f'Action: clinical_db_tool\n{{"query": "{query}"}}\n\nResults: {result}')]}
else:
return {"messages": [AIMessage(content=response_text)]}
# Grading function: Checks if retrieved documents were found
def simple_grade_documents(state: AgentState):
messages = state["messages"]
last_message = messages[-1]
print("Evaluating message:", last_message.content)
if "Results:" in last_message.content and "No relevant" not in last_message.content:
print("---DATA FOUND, PROCEED TO GENERATE INSIGHTS---")
return "generate"
else:
print("---NO DATA FOUND, TRY REWRITE---")
return "rewrite"
# Generate function: Synthesizes repurposing insights from retrieved data
def generate(state: AgentState):
print("---GENERATE FINAL INSIGHTS---")
messages = state["messages"]
question = messages[0].content
last_message = messages[-1]
# Extract data from results
data_start = last_message.content.find("Results:")
retrieved_data = last_message.content[data_start:] if data_start != -1 else "No data available"
# Build a prompt to synthesize insights
prompt = f"""Based on the following retrieved data:
{retrieved_data}
and considering the question:
{question}
Summarize potential drug repurposing opportunities and any recommended next steps for further investigation.
"""
# Dummy generation using a simple echo for demonstration.
final_answer = f"Summary Insight: Considering the data, a promising repurposing opportunity is to explore Drug A for anti-inflammatory applications beyond its original use, and Drug B might be repurposed for neurodegenerative conditions. Further research should validate these hypotheses."
print("Final Answer:", final_answer)
return {"messages": [AIMessage(content=final_answer)]}
# Rewrite function: If no data is found, help rephrase the query for clarity
def rewrite(state: AgentState):
print("---REWRITE QUESTION---")
messages = state["messages"]
original_question = messages[0].content if messages else "N/A"
# Dummy rewrite that just appends "Please specify mechanism or trial data" for demonstration.
rewritten = f"{original_question} (Please specify if you are asking about drug mechanism or clinical trial outcomes.)"
print("Rewritten question:", rewritten)
return {"messages": [AIMessage(content=rewritten)]}
# Decision function: Determines next step based on last message content
def custom_tools_condition(state: AgentState):
messages = state["messages"]
last_message = messages[-1]
content = last_message.content
if content.startswith("Action:"):
print("Tool action detected. Proceed to retrieval.")
return "tools"
return END
# Create the workflow graph
workflow = StateGraph(AgentState)
workflow.add_node("agent", agent)
retrieve_node = ToolNode(tools)
workflow.add_node("retrieve", retrieve_node)
workflow.add_node("rewrite", rewrite)
workflow.add_node("generate", generate)
# Define workflow edges
workflow.add_edge(START, "agent")
workflow.add_conditional_edges("agent", custom_tools_condition, {"tools": "retrieve", END: END})
workflow.add_conditional_edges("retrieve", simple_grade_documents)
workflow.add_edge("generate", END)
workflow.add_edge("rewrite", "agent")
app = workflow.compile()
# Function to process a query through the workflow
def process_question(user_question: str, app, config: dict):
events = []
for event in app.stream({"messages": [("user", user_question)]}, config):
events.append(event)
return events
# Streamlit UI for the Drug Repurposing Advisor
def main():
st.set_page_config(
page_title="Drug Repurposing Advisor",
layout="wide",
initial_sidebar_state="expanded"
)
st.title("π Drug Repurposing Advisor")
st.markdown("### Explore potential drug repurposing opportunities with AI-driven insights.")
query = st.text_area("Enter your research question:",
placeholder="e.g., Can Drug A be repurposed for neurodegenerative diseases?")
col1, col2 = st.columns([1, 2])
with col1:
if st.button("π Get Insights", use_container_width=True):
if query:
with st.spinner("Processing your query..."):
events = process_question(query, app, {"configurable": {"thread_id": "1"}})
for event in events:
if 'agent' in event:
with st.expander("Agent Processing Step", expanded=True):
content = event['agent']['messages'][0].content
st.markdown(f"**Agent Step Output:**\n\n{content}")
elif 'generate' in event:
st.markdown("### Final Insights:")
st.success(event['generate']['messages'][0].content)
elif 'rewrite' in event:
st.markdown("### Suggestion:")
st.warning(event['rewrite']['messages'][0].content)
else:
st.warning("β οΈ Please enter a query.")
with col2:
st.markdown("""
**How to Use the Drug Repurposing Advisor:**
1. **Input Query:** Describe your research question. Specify whether you are interested in drug mechanisms or clinical outcomes.
2. **Get Insights:** Click "Get Insights" and let the system process your query.
3. **Review Output:** Explore the retrieved data and the final synthesized insights.
**Example Questions:**
- "How does Drug A work and could its mechanism be useful in treating inflammatory diseases?"
- "What are the clinical trial outcomes of Drug B and can it be repurposed for neurodegenerative conditions?"
""")
if __name__ == "__main__":
main()
|